Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Conclusions drawn from the breadth of analytical data on primitive achondrites and enstatite chondrites paired with results of research performed by the authors have led the authors to propose the establishing of a new group of meteorites: primitive enstatite achondrites. The group is defined as the residual remaining after the partial melting of their protolith, which, in the case of primitive enstatite achondrites, is the parent body of enstatite chondrites. In this article are characterized textural features and characteristics of their mineral, chemical, and isotopic composition. The most important of these defining features are the presence of relic chondrules and/or triple junctions of crystal faces, as well as characteristic atomic and molar ratios of main elements: Si, Al, Fe, Mg, Mn and Ca, and particularly the molar ratios Fe/Mn and Fe/Mg. Another important characteristic is the isotopic composition of entrained noble gases, especially ratios of the heaviest of the isotopes and oxygen isotopes, whose values should be close to that typical for enstatite chondrites. It seems likely that the first meteorite to be classified as primitive enstatite achondrite will be the Zakłodzie enstatite achondrite.
Czasopismo
Rocznik
Tom
Strony
9--21
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
autor
autor
- Nicolaus Copernicus Museum in Frombork, ul. Katedralna 8, 14-530 Frombork, Poland
Bibliografia
- 1. Benedix G.K., McCoy T.J., Keil K., Bogard D.D., Garrison D.H., 1998 – A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochim. Cosmochim. Acta, 62, 2535–2553.
- 2. Benedix G.K., McCoy T.J., Keil K., Love S.G., 2000 – A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-winonaite parent body. Meteoritics & Planet. Sci., 35, 1127–1141.
- 3. Burbine T.H., McCoy T.J., Dickison T.L., 2000 – Origin of plagioclase-“enriched”, igneous enstatite meteorites (abstract). Meteoritics & Planetary Science, 35, A36.
- 4. Busemann H., Baur H., Wieler R., 2000 – Primordial noble gases in “Phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteoritics & Planetary Science, 35, 949–973.
- 5. Clayton R.N., Mayeda Y.K., 1996 – Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta, 60, 1999–2018.
- 6. Goodrich C. A., 1992 – Ureilites: A critical review. Meteoritics, 27, 327–352.
- 7. Goodrich C.A., Jones J.H., Berkley J.L. 1987 − Origin and evolution of the ureilite parent magmas: Multi-stage igneous activity on a large parent body. Geochim. Cosmochim. Acta, 51, 2255–2273.
- 8. Goodrich C.A., Delaney J.S., 2000 – Fe/Mg-Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies. Geochim. Cosmochim. Acta, 64, 149–160.
- 9. Goodrich C.A., Fioretti A.M., Tribaudino M., Molin G., 2001 Primary trapped melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009. Geochim. Cosmochim. Acta, 65, 621–652.
- 10. Goodrich C. A., Scott E. R. D, Fioretti A. M., 2004 – Ureilitic breccias: Clues to the petrologic structure and impact disruption of the ureilite parent body. Chem. Erde, 64, 283–327.
- 11. Grady M. M., 2000 – Catalogue of Meteorites, Fifth edition. NHM London.
- 12. Hutchison R., 2006 – Meteorites: A petrologic, chemical and isotopic synthesis. Cambridge University Press, Cambridge, UK.
- 13. Ikeda Y., Prinz M., 2000 – Magmatic inclusions and felsic clasts in the Dar al Gani 319 polymict ureilite. Meteoritics & Planet. Sci., 36, 481–500.
- 14. Ikeda Y., Prinz M., Nehru C. E., 2000 – Lithic and mineral clasts in the Dar al Gani (DAG) 319 polymict ureilite. Antarct. Meteorit. Res., 13, 177–221.
- 15. Irving A. J., Bunch T. E., Rumble D.III, Larson T. E., 2005 – Metachondrites: Recrystallized and/or residual mantle rocks from multiple, large chondritic parent bodies: 68th Met. Soc. Meeting, #5218.
- 16. Jenniskens P., Shaddad M.H., Numan D., Elsir S., Kudoda A.M., Zolensky M.E., Le L., Robinson G.A., Friedrich J.M., Rumble D., Steele A., Chesley S.R., Fitzsimmons A., Duddy S., Hsieh H.H., Ramsay G., Brown P.G., Edwards W.N., Tagliaferri E., Boslough M. B., Spalding R.E., Dantowitz R., Kozubal M., Pravec P., Borovicka J., Charvat Z., Vaubaillon J., Kuiper J., Albers J., Bishop J.L., Mancinelli R.L., Sandford S.A., Milam S.N., Nuevo M., Worden S.P., 2009 – Teimpact and recovery of asteroid 2008 TC3. Nature, 458, 26 March, 485–488.
- 17. Karwowski Ł., Kryza R., Przylibski T.A., 2007 – New chemical and physical data on keilite from the Zakłodzie enstatite achondrite. American Mineralogist, 92, 204–209.
- 18. Keil K., BischoffA.,2008 – Northwest Africa 2526: A partial melt residue of enstatite chondrite parentage. Meteoritics & Planetary Science, 43, 1233-1240.
- 19. Koblitz J., 2010 – MetBase® 7.3 Meteorite Data Retrieval Software. Ritterhude, Germany.
- 20. McCoy T.J., Keil K., Clayton R.N., Mayeda T.K., Bogard D.D., Garrison D.H., Huss G.R., Hutcheon I.D., Wieler R., 1996 – A petrologic, chemical and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochim. Cosmochim. Acta, 60, 2681–2708.
- 21. McSween H.Y., Jr., Huss G. R., 2010 – Cosmochemistry. Cambridge University Press, Cambridge, UK.
- 22. Mittlefehldt D.W., Lindstrom M.M., 1998 – Petrology and geo-chemistry of lodranite GRA 95209 (abstract). Meteoritics & Planet. Sci., 33, A111.
- 23. Mittlefehldt D.W., Bogard D.D., Berkley J.L., Garrison D.H., 2003 – Brachinites: Igneous rocks from a differentiated asteroid. Meteoritics & Planet. Sci., 38, 1601–1625.
- 24. Nehru C.E., Prinz M., Weisberg M.K., Ebihara M.E., Clayton R.E., Mayeda T.K., 1996 – Brachinites: A new primitive achondrite group (abstract). Meteoritics, 27, 267.
- 25. Palme H., Schultz L., Spettel B., Weber H.W., Wänke H., Christophe Michel–Levy M., Lorin J.C., 1981 – The Acapulco meteorite: Chemistry, mineralogy and irradiation effects. Geochim. Cosmochim. Acta, 45, 727–752.
- 26. Patzer A., Schultz L., 2001 – Noble gases in enstatite chondrites I: exposure ages, pairing, and weathering effects. Meteoritics & Planetary Science, 36, 947–961.
- 27. Patzer A., Schultz L., 2002 – Noble gases in enstatite chondrites II: Tetrappedcomponent. Meteoritics & Planetary Science, 37, 601-612.
- 28. Patzer A., Hill D.H., Boynton W.V., Franke L., Schultz L., Jull A.J.T., McHargue L.R., Franchi I.A., 2002 – Itqiy: A study of noble gases and oxygen isotopes including its terrestrial age and a comparison with Zakłodzie. Meteoritics & Planetary Science, 37, 823–833.
- 29. Pilski A., 2004 – Primitive enstatite achondrites. 3rd Meteorite Conference in Poznań, 41–46. (in Polish).
- 30. Prinz M., Nehru C.E., Delaney J.S., Weisberg M., 1983 – Silicates in IAB and IIICD irons, winonaites, lodranites and Brachina: A primitive and modified primitive group (abstract). Lunar and Planetary Science XIV, 616–617. Lunar and Planetary Institute, Houston.
- 31. Przylibski T.A., Zagożdżon P.P., Kryza R., Pilski A.S., 2005 – The Zakłodzie enstatite meteorite: Mineralogy, petrology, origin and classification. Meteoritics & Planetary Science, 40, Supplement, A185–A200.
- 32. Rubin A.E., 2007 – Petrogenesis of acapulcoites and lodranites: A shock-melting model. Geochimica et Cosmochimica Acta, 71, 2383–2401.
- 33. Takeda H., 1987 – Mineralogy of Antarctic ureilites and a working hypothesis for their origin and evolution. Earth Planet. Sci. Lett., 81, 358–370.
- 34. Warren P.H., Kallemeyn G.W., 1989 – Allan Hills 84025: The second brachinite, far more differentiated than Brachina, and an ultramafic achondritic clast from L chondrite Yamato 75097. Proc. Lunar Planet. Sci. Conf. 19th, 475–486.
- 35. Warren P.H., Kallemeyn G.W., 1992 – Explosive volcanism and the graphite-oxygen fugacity buffer on the parent asteroid(s) of the ureilite meteorites. Icarus, 100, 110–126.
- 36. Weisberg M.K., McCoy T.J., Krot A.N., 2006 – Systematics and Evaluation of Meteorite Classification. Meteorites and the Early Solar System II. 19 – 52.
- 37. Wieler R., Anders E., Baur H., Lewis R.S., Signer P., 1992 – Characterisation of Q-gases and Rother noble gas components in the Murchison meteorite. Geochim. Cosmochim. Acta, 56, 2907–2921.
- 38. Zhang Y., Benoit P.H., Sears D.W.G., 1995 – Teclassification and complex thermal history of the enstatite chondrites. Journal of Geophysical Research, 100, 9417–9438.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW6-0026-0002