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Abstract: A prediction model is presented of the ship propulsion risk, i.e. a risk of 

the consequences of loss of the ship propulsion capability. This is an expert model 

based on opinions elicited by the ship power plant operators. The risk level 

depends, among other things, on the reliability state of the ship propulsion system 

components. This state is defined by operators in a linguistic form. The formal risk 

model parameters are determined by means of a neural network.   
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Abstrakt: Przedstawiony został model predykcji ryzyka napędowego statku, czyli 

ryzyka konsekwencji utraty zdolności do realizacji przezeń funkcji napędu. Jest to 

model ekspertowy, oparty na opiniach uzyskanych od operatorów siłowni 

okrętowych. Poziom ryzyka zależy między innymi od stanów niezawodnościowych 

urządzeń systemu napędowego statku. Stany te wyznaczają operatorzy w formie 

lingwistycznej. Parametry formalnego modelu ryzyka wyznacza się siecią 

neuronową.  
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1.Introduction 

 

The risk prediction model consists of a dangerous event (DE) module and 

the event consequence module. The DE connects the two modules - it 

initiates consequences of particular causes. In the case of propulsion risk 

(PR), the event DE is immediate loss of the propulsion capability by the 

ship, i.e. an immediate catastrophic failure (ICF) of its propulsion system 

(PS). The event may be caused by the PS element failures or operator errors.   

It is assumed that the model parameter identification will be based on 

opinions of the ship power plant operators, hereinafter referred to as experts. 

The opinions will be formulated mainly in a linguistic form, supported to a 

minimum extent by numerical data.  

The ship PS is well developed. In the example of a simple PS presented 

below, it consists of 11 subsystems (SS) and these of 92 sets of devices (SD) 

including several hundred devices (D) altogether. The PS sizes, the expert 

ability to express the opinions necessary to construct a propulsion risk 

model and the limited number of experts that the authors managed to 

involve in the study influenced the model form.   

The expert investigation methods used in the PR modeling were presented 

in publications (Brandowski et al. 2008, 2009; Brandowski 2009; Nguyen 

2009). 

 

2. The propulsion risk prediction model  

 

The PR model form is determined by data that can be obtained from experts. 

It is assumed that they elicit annual numbers N of the system ICF type 

failures, system operating time share in the calendar time of the system 

observation by the expert t(a) %, linguistic estimation of the share of number 

of PS fault tree (FT) cuts in the failure number N during a year and 

linguistic estimation of chance preferences of the occurrence of system ICF  

specific consequences, on the condition that the event itself occurs. Those 

opinions are a basis for the construction of a system risk prediction model. 

The following assumptions are made as regards the system risk model: 

- The system may be only in the active use or stand-by use state. The 

system ICF type events may occur only in the active use state.  

- The formal model of a PS ICF event stream is the Homogeneous Poisson 

Process (HPP).  

It is a renewal process model with negligible renewal duration time. This 

assumption is justified by the expert opinions, which indicate that ICF 

failures of PS systems may occur quite frequently, even several times a 
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year, but in general they cause only a relatively short break in normal 

system operation. Also the exponential time between failures distribution, as 

in the case of HPP, is characteristic of the operation of many system classes, 

including the ship devices.  

- The HPP parameter is determined in a neural network from data elicited 

by experts. The network can be calibrated with real data obtained from 

the system (or a similar systems) operation. 

- The failure consequences are determined from data on the chances of 

occurrence elicited in the expert opinions.  

- The operators perform predictions of the system reliability condition and 

PR, i.e. of the system ICF specific consequences, based on subjective 

estimations of the analysed system component condition.   

For given ICF event a fault tree (FT) is constructed, where the top event is 

an ICF type PS failure and the basic events are the system minimum cut or 

cut failures. The notion of minimum cut is generally known. Cut is defined 

as a set of elements (devices) fulfilling a specific function and loss of that 

function results in a system ICF. In the case of minimum cut, failures of the 

same system elements may appear in more than one minimum cuts. 

Therefore, they are not disjoint events in the probabilistic sense. Besides, 

obtaining reliable expert opinions on the minimum cut failures is almost 

unrealistic.  

Cuts have defined reliability structures (RS). If those structures and the 

number of cut failures within a given time interval are known, then the 

number of failures of particular devices in the cuts can be determined.   

The diagram of a model in Figure 1 illustrates the PR prediction within a 

period of time t(p). The system operator inputs estimated reliability states of 

the cut elements (block (1) of the model). The elements are devices (D) of 

the all system cuts. The estimates are made by choosing the value of the 

linguistic variable LV = average annual number of ICF events from the set 

{excellent, very small, small, medium, large, very large, critical} for the 

individual Ds. The operator may be supported in that process by a database.   

Having the reliability states of the FT cuts and their RS structures, average 

numbers Nik of these cut ICF failures are determined by “operator 

algorithm” (block (2)). The appropriate methods are presented in section 3 

of this paper. They are input data to the neural network.  

The neural network, performing generalized regression, determines the 

system ICF type failure annual number N in the numerical and linguistic 

values (block (3)). In the first case, the network determines the respective 

value of an LV variable singleton membership function, and in the second 

case - a corresponding linguistic value of that function. In both cases 7 
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values of the LV were adopted. The network may be more or less complex 

depending on the number of cuts and the FT structure. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Diagram of the fuzzy-neuron model of risk prediction 

 

If there is disproportion between the number of entries and the teaching data 

lot size, then the system FT may be divided at the lower composition levels 

and then the component networks "assembled" again. In the ship propulsion 

risk prediction example here below, the ship PS was decomposed into 

subsystems (SS) and those into sets of devices (SD). 

The system reliability condition, according to its operator, i.e. annual 

number N of its ICFs, is presented in a linguistic form by giving the LV 

value determined in block (3) (block (4)). 

Input to the model is risk prediction calendar time t(p) [year] and the 

modeled PS active use time coefficient τ(a). The prediction time is chosen as 

needed, in connection with the planned sea voyages.   

The probability of the system ICF event occurrence within the prediction 

time t(p) is determined by a size K vector (block (6)): 
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system ICFs within t = 1 year of observation, with the active use time 

coefficient τ determined by neural network; k = number of ICFs. 

Vector (2) expresses the probability of occurrence of k = 1,2,…,K system 

ICFs within the prediction time t(p) interval. 

Probability of occurrence of specific consequences on the condition of the 

analysed system ICF occurrence: 

     },/{ ICFCP           (2) 

where C = C1 U C2 = very serious casualty C1 or serious casualty C2  

(IMO 2005). 

This probability value is input by the operator from earlier data obtained 

from expert investigations for a specific ship type, shipping line, ICF type 

and ship sailing region. The values may be introduced to the prediction 

program database.  

The consequences C are so serious, that they may occur only once within 

the prediction time t(p), after any of the K analysed system ICFs. The risk of 

consequence occurrence after each ICF event is determined by vector whose 

elements for successive k-th ICFs are sums of probabilities of the products 

of preceding ICF events, non-occurrence of consequences C of those events 

and occurrence of the consequences of k-th failure (block (7)):  

 KxICFCPICFPICFCPtC xx
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         (3) 

Risk (3) is presented in block (8). 

 

3. Operator’s algorithm  

 

3.1. Cat models 

 

The algorithm allows processing of the subjective estimates of numbers of 

device D failures, creating FT cuts, into numerical values of the numbers of 

failures of those cuts, which are the neural network input data. The 

algorithm is located in block (2) of the prediction model. The data are input 

to the model during the system operation, when devices change their 

reliability state. Additionally, the algorithm is meant to aid the operator in 

estimating the system condition.  

The numerical values of the numbers of failures in cuts are determined by 

computer program from the subjective linguistic estimates of the numbers of 

failures of component devices D. The estimates are made by the system 

operators and based on their current knowledge of the device conditions. 

This is simple when cut is a single-element system, but may be difficult 

with complex RS cuts. The algorithm aids the operator in the estimates. 
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Specifically, it allows converting the linguistic values of the numbers of 

device D ICF events into corresponding numerical values of the cuts. The 

data that may be used in this case are connected with cuts - the universe of 

discourse (UD) of linguistic variables LV of the cut numbers of failures and 

RS. These numbers are determined from the expert investigations.  

Cuts are sets of devices with specific RS - systems in the reliability sense. 

They may be single- or multi-element systems. They are distinguished in the 

model because they can cause subsystem ICFs and in consequence a PS 

failure. Annual numbers of the cut element (device) ICFs change during the 

operation process due to time, external factors and the operational use.   

The conversion problem is consider for the case when in the system FT cuts 

of subsystems (CSS) are distinguished and in them cuts of sets of devices 

(CSD). The following CSD notation is adopted: 
 

   },,...,2,1:{ LleCSD iklik  ,            (4) 

 

where CSDik = k-th cut of i-th subsystem; eikl = l-th element of k-th CSD. 
 

The CSD cut renewal process parameters, i.e. intensity functions λ 

(ROCOF), are determined from the expert investigations of the system PS. 

In this case, they are applied only to the ICFs causing the loss of CSD 

function. Annual numbers of failures N, whose functions are intensity 

functions λ, are determined. It may be assumed that the numbers elicited by 

experts are average values in their space of professional experience gained 

during multi-year seamanship. Then the asymptotic intensity function takes 

the form (Misra 1992): 
 

     ,)(

t

Na


           (5) 

where N = average number of the analysed system failures during the 

observation time t; τ = active use time coefficient; t = 1 year = calendar time 

that the estimate of the number of failures is related to.  
 

We are interested in the ratio of the number of CSD cut ICFs to the number 

of such failures of the cut elements. It is determined from the formulas of 

the relation of systems, of specific reliability structures, hazard rate to the 

hazard rates of their components. It should be remembered that in the case 

of a HPP the times between failures have exponential distributions, whose 

parameter is the modeled object hazard rate, in the analysed case equal to 

the process renewal intensity function λ.  

 



A fuzzy - neuron model of the ship propulsion risk prediction 

Rozmyto - neuronowy model predykcji ryzyka napędowego statku 

 

123 

3.2. Fuzzy approach to the cut failure number estimate problem 

 

Our linguistic variables LV are estimates of the average annual numbers of 

ICFs failures Nik of cuts CSDik and Nikl devices Dikl. We define those 

variables and their linguistic term-sets LT-S. We assume seven-element sets 

of those values: excellent, very small, small, medium, high, very high, 

critical. We assume that these values represent the reliability state of 

appropriate objects. 

From the expert investigations we obtain the universe of discourse values 

UDik of individual cuts. Each of those universes is divided into six equal 

intervals. We assume that the boundary values   

     721 ,...,, ikikik NNN  

of those intervals are singleton member functions of the corresponding 

linguistic variable values LVik. 

The universe of discourse values UDik  are the variability intervals of the Nik 

numbers of failures of cuts CSDik and can be expressed as the function of 

the Nikl numbers of failures of devices Dikl. In the case of a single element 

RS, parallel RS and with stand-by reserve RS composed of identical 

elements in terms of reliability, we can easily determine the minimum and 

maximum numbers of element failures 

     71 , iklikl NN  

of their universes of discourse UDikl and then the singleton seven-element 

member functions: 

           .,...,, 721
ikliklikl NNN  

If all the cut elements remain in the excellent state then the cut is also in the 

excellent state. If all the cut elements remain in the critical state then the cut 

is also in the critical state. The situation is more difficult when the cut are 

not identical in terms of reliability. Then expert opinion-based heuristic 

solutions must be applied. 

 

4. Case study 

 

The example pertains to the prediction of a seagoing ship propulsion risk. 

Determination of the probability of loss of propulsion capability is difficult 

because of the lack of data on the reliability of PS elements and of 

operators. This applies in particular to the risk estimates connected with 

decisions made in the ship operation phase.   

The object of investigation was a PS consisting of a low-speed piston 

combustion engine and a constant pitch propeller, installed in a container 
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carrier operating on the Europe - North America line. The object was 

decomposed into subsystems (SS) (propulsion assembly and auxiliary 

installations necessary for the PS functioning - 11 system CS cuts 

altogether) and the subsystems into sets of devices (SD), which makes 89 

subsystem CSS cuts. The system FT consists of alternatives of those cuts.  

Using the code (IMO, 2005), five categories of ICF consequences were 

distinguished, including very serious casualty C1, serious casualty C2 and 

three incident categories. Consequences of the alternative of first two events 

were investigated (C = C1 U C2). 

 The consequences are connected with losses. They may involve people, 

artifacts and natural environment. They are expressed in physical and/or 

financial values. Detailed data on losses are difficult to obtain, particularly 

as regards rare events like the C1 and C2 type consequences. They cannot 

be obtained from experts either, as most of them have never experienced 

that type of events. In such situation, the risk was related only to the type C 

consequences of an ICF event. 

 

4.1. Acquisition and processing of expert opinions  

 

The experts in the ICF event investigation were ship mechanical engineers 

with multi-year experience (50 persons). Special questionnaires were 

prepared for them, containing definition of the investigated object, SS and 

SD diagrams, precisely formulated questions and tables for answers. The 

questions asked pertained to the number of ICF type events caused by 

equipment failures or human errors within one year and the share of time at 

sea in the ship operation time (PS observation time by expert). These were 

the only questions requiring numerical answers.   

Other questions were of a linguistic character and pertained to the share of 

ICF type failures of individual SSs in the annual number of the PS ICF type 

events and the share of ICF failures of individual SD sets in the annual 

numbers of SS failures. In both presented cases the experts chose one of five 

values of the linguistic variables: very great, great, medium, small, very 

small. The elicited linguistic opinions were compared in pairs and then 

processed by the AHP method (Saaty 1980; Nguyen 2009). The obtained 

distribution of subsystem shares complies with the engineering knowledge. 

The greatest shares are due to the main engine and the electric power and 

fuel supply systems and the smallest - due to the propeller with shaft line.   

The experts in the ICF event consequence field were ship mechanical 

engineers and navigation officers (37 persons). A similar questionnaire was 

prepared with questions about preferences of possible consequences. 
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The experts could choose from the following preferences: equivalence, 

weak preference, significant preference, strong preference, absolute 

preference, and inverse of these preferences (Saaty, 2005; Nguyen 2009). 

After processing of the so obtained data by the AHP method, a normalized 

vector of shares of the ICF type event consequences was obtained.  

 

4.2. Some results 

 

Figure 2 presents probability distribution of the occurrence of specific 

numbers of PS ICF type events depending on its reliability state. Three 

states were distinguished: excellent, medium and critical. The number of 

ICF events from 1 to 3 was adopted for each of those states. The probability 

prediction was performed for the time t(p) = 1 month. The diagram indicates 

that one ICF type event during 1 month long sea voyage can be realistically 

expected.  
 

    },{ kICFP  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2  Probability distribution of the annual numbers of ICF type events for the 

selected PS reliability states. Prediction time t(p) = 1 month. 

 

Figure 3 presents distribution of PR, i.e. the risk of type C consequences 

after occurrence of an ICF event, for selected PS reliability states. The 

diagram shows increased risk with deteriorating PS  condition. The change 

of PS reliability condition from excellent to critical causes more than 3.5-

fold increase of the ICF event probability.  

The risk in Figure 3 was calculated under the assumption that the type C 

consequences may occur only once in the prediction time interval. 
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Therefore, the risk maximum value may be considered its boundary value. 

The value is 0.025 and occurs after second ICF event, when PS is in a 

critical state and the prediction time is one month. 
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Fig. 3  Risk of type C consequences depending on the number of ICF events 

 and PS reliability state. Prediction time t(p) = 1 month 

 

5. Conclusions 

 

In the expert investigations we have to rely on data obtained from experts 

and models are constructed from that data. The adequacy and type of 

obtained information depends on the form and adequacy of the data. The 

expert competence level must not be exceeded. In the case reported here, it 

might have happened in the estimates of occurrence of the ICF event 

consequences. In the authors' opinion, the competence level was not 

exceeded as the remaining data are concerned, as the choice of experts was 

careful.   

The expert elicited data have an impact on the level of adequacy of models 

used in the investigations.  A number of simplifying assumptions had to be 

made. Some of them are the following: two states of the use of modeled 

objects, failures possible only in the active use state, homogeneity of the 

Poisson renewal process, the cut notion, definition of the ICF event 

consequences etc.  

Results of the propulsion risk estimates quoted in this section are not 

questionable as regards the order of magnitude of the numbers. Events from 

the subset of C consequences occur at present in about 2% of the ship 

population (20 ships out of 1000 in a year). This applies to ships above 500 

GT. There are at present about 50 thousand such ships (Graham, 2009). The 
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results are also adequate in terms of trends of changes in the investigated 

values, which are in compliance with the character of the respective 

processes.   

It has to be taken into account that results of a subjective character may be 

(but not necessarily) subject to greater errors than those obtained in a real 

operating process. The adequacy of such investigations depends on the 

method applied, and particularly on the proper choice of experts, their 

motivation, as well as the type of questions asked. In the expert 

investigations the fuzzy methods are especially useful, as they allow the 

experts to express their opinions in a broader perspective. In the authors' 

opinion, the main difficulty in the neural network application for modeling 

is the necessity of having a considerable amount of input and output data for 

tuning the models. In the prospective investigations the data are generally in 

short supply. They may be gathered after some time in the operating process 

of the respective objects, but that may appear to be too late.  
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