PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer analysis of oxygen adsorption at SnO2 thin films

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An influence of oxidation of SnO2 thin films on depletion layer electronic parameters and film conductance has been studied by means of computer simulations. The surface potential value and in-depth potential profiles in the depletion region have been obtained by solving the Poisson--Boltzmann equation in the case of grains with slab geometry and different doping. The SnO2 grain thickness was in the range from 20 to 500 nm. The surface coverage by oxygen ions (O2-, O-) as well as film conductance per square and its sensitivity versus temperature (from 300 to 900 K) have been rigorously calculated. The effect of donor (oxygen vacancies) mobility and degree of donor ionisation has been taken into account.
Czasopismo
Rocznik
Strony
377--385
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] RANTALA T.S., LANTTO V., RANTALA T.T., Rate equation simulation of the height of Schottky barriers at the surface of oxidic semiconductors, Sensors and Actuators B: Chemical 13–14, 1993, pp. 234–7.
  • [2] IZYDORCZYK W., ADAMOWICZ B., MICZEK M., WACZYŃSKI K., Computer analysis of an influence of oxygen vacancies on the electronic properties of the SnO2 surface and near-surface region, Physica Status Solidi A 203(9), 2006, pp. 2241–6.
  • [3] SZUBER J., CZEMPIK G., LARCIPRETE R., ADAMOWICZ B., The comparative XPS and PYS studies of SnO2 thin films prepared by L-CVD technique and exposed to oxygen and hydrogen, Sensors and Actuators B: Chemical 70(1–3), 2000, pp. 177–81.
  • [4] CHANG S.C., Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements, Journal of Vacuum Science and Technology 17(1), 1980, pp. 366–9.
  • [5] MORRISON S.R., The Chemical Physics of Surfaces, Plenum Press, New York 1997.
  • [6] KISSINE V.V., SYSOEV V.V., VOROSHILOV S.A., Conductivity of SnO2 thin films in the presence of surface adsorbed species, Sensors and Actuators B: Chemical 79(2–3), 2001, pp. 163–70.
  • [7] LANTTO V., ROMPPAINEN P., LEPPÄVUORI S., Response studies of some semiconductor gas sensors under different experimental conditions, Sensors and Actuators 15(4), 1988, pp. 347–57.
  • [8] SCHIERBAUM K.D., WIEMHÖFER H.D., GÖPEL W., Defect structure and sensing mechanism of SnO2 gas sensors: comparative electrical and spectroscopic studies, Solid State Ionics, Diffusion and Reactions 28–30, 1988, pp. 1631–6.
  • [9] MIZSEI J., LANTTO V., Simultaneous response of work function and resistivity of some SnO2-based samples to H2 and H2S, Sensors and Actuators B: Chemical 4(1–2), 1991, pp. 163–8.
  • [10] SEMANCIK S., COX D.F., Fundamental characterization of clean and gas-dosed tin oxide, Sensors and Actuators 12(2), 1987, pp. 101–6. O2
  • [11] MAFFEIS T.G.G., OWEN G.T., PENNY M.W., STARKE T.K.H., CLARK S.A., FERKEL H., WILKS S.P., Nanocrystalline SnO2 sensor response to O2 and CH4 at elevated temperature investigated by XPS, Surface Science 520(1–2), 2002, pp. 29–34.
  • [12] SLATER B., CATLOW C.R.A., WILLIAMS D.E., STONEHAM A.M., Dissociation of O2 on the reduced SnO2 (110) surface, Chemical Communications, Issue 14, 2000, pp. 1235–6.
  • [13] OVIEDO J., GILLAN M.J., First-principles study of the interaction of oxygen with the SnO2 (110) surface, Surface Science 490(3), 2001, pp. 221–36.
  • [14] RANTALA T.S., LANTTO V., Some effects of mobile donors on electron trapping at semiconductor surfaces, Surface Science 352–354, 1996, pp. 765–70.
  • [15] MORRISON S.R., Mechanism of semiconductor gas sensor operation, Sensors and Actuators 11(3), 1987, pp. 283–7.
  • [16] BARSAN N., WEIMAR U., Conduction model of metal oxide gas sensor, Journal of Electroceramics 7(3), 2001, pp. 143–67.
  • [17] MURAKAMI N., TANAKA K., SASAKI K., IKOHURA K., Proceedings of the International Meeting on Chemical Sensors, Fukuoka, Japan, September 19–22, 1983, p. 187.
  • [18] SUMMIT H.R., BORRELLI N.F., Temperature dependence of the ultraviolet absorption edges in SnO2, Journal of Applied Physics 37(5), 1966, pp. 2200–1.
  • [19] FONSTAD C.G., REDIKER R.H., Electrical properties of high-quality stannic oxide crystals, Journal of Applied Physics 42(7), 1971, pp. 2911–8.
  • [20] REMBEZA S.I., REMBEZA E.S., SVISTOVA T.V., BORSIAKOVA O.I., Electrical resistivity and gas response mechanisms of nanocrystalline SnO2 films in a wide temperature range, Physica Status Solidi A 179(1), 2000, pp. 147–52.
  • [21] SANJINES R., LÉVY F., DEMARNE V., GRISEL A., Some aspects of the interaction of oxygen with polycrystalline SnOx thin films, Sensors and Actuators B: Chemical B1(1–6), 1990, pp. 176–82.
  • [22] VETRONE J., CHUNG Y.W., CAVICCHI R., SEMANCIK S., Role of initial conductance and gas pressure on the conductance response of single-crystal SnO2 thin films to H2, O2, and CO, Journal of Applied Physics 73(12), 1993, pp. 8371–6.
  • [23] KUPRIYANOW L.YU., Semiconductor Sensors in Physico-Chemical Studies, Elsevier, Amsterdam 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW6-0011-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.