PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controlled balanced growth of positive linear discrete-time systems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper properties of M-matrices are used to develop procedures to ensure that a positive discrete-time linear system achieves a specified desired balanced growth rate. Both closed-loop and open-loop control procedures are considered, with state feedback being adopted for implementing the closed-loop control. Procedures developed are illustrated by simple examples.
Czasopismo
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 21 poz.,
Twórcy
autor
  • Department of Mathematics, Curtin University of Technology, Perth, WA 6845, Australia
autor
  • Control Theory and Appliations Centre, Coventry University Coventry, CV15FB, UK
Bibliografia
  • [1] Farina L., Rinaldi S., Positive Linear Systems: Theory and Applications, Wiley. New York 2000.
  • [2] Berman A., Neumann M., Stern R. J., Non-negative Matrices in Dynamic Systems, Wiley, New York 1989.
  • [3] Kaczorek T., Positive ID and 2D Systems, Springer, London 2002.
  • [4] Rouhani R., Tse E., Structural design for classes of positive linear systems, IEEE Trans. on Systems, Man and Cybernetics, SMC-II, 1981, 126-134.
  • [5] Destrochers A. S., Al-Jaar R. Y., Applications of Petri Nets in Manufacturing Systems: Modelling, Control and Performance Analysis, IEEE Control Systems Society Press, New York 1995.
  • [6] James G., Rumchev V., A fractional-flow model of serial manufacturing systems with rework and its reachability and controllability properties. Systems Science, 27, 2, 2001, 49-59.
  • [7] Caccetta L., Foulds S L. R., Rumchev V. G., A positive linear discrete-time system model of capacity planning and its controllability properties. Mathematical and Computer Modelling, to appear, 2003.
  • [8] Luenburger D. G., Introduction to Dynamical Systems: Theory, Models and Applications, Wiley New York 1979.
  • [9] Jacques J. A., Simon C. P., Qualitative theory of compartmental systems, SIAM Review, 35, 1993 43-79.
  • [10] Van der Hof J., Positive linear observers for linear compartmental systems, SIAM Journal on Control and Optimization, 38, 2, 1998, 590-608.
  • [11] James G., Rumchev V., Reachability and controllability of compartmental systems. Systems Science,26, 1,2000, 5-13.
  • [12] James D. J. G., Kostova S. P., Rumchev V. G., Pole-assignment for a class of positive linea. systems. Int. J. Systems Science, 32. 12, 2001, 1377-1388.
  • [14] Leontief W. W., Quantitative input and output relations in the economic system of the Unite States, Rev. Econ. Statist., 18, 1936, 100-125.
  • [15] Leontief W. W., input-Output Economics, Oxford Univ. Press, London 1966.
  • [16] Gandolfo G., Economic Dynamics: Methods and Models, Elsevier, New York 1985.
  • [17] James D. J. G., Rumchev V. G., Robot populations and their controlled evolution, Artif. Life an Robotics. 4, 2000, 137-142.
  • [18] Rumchev V. G., James D. J. G., The role of non-negative matrices in discrete-time mathematica modelling. Int. J. Math. Educ. Sci. Technol., 21,2, 1990, 169-182.
  • [19] James D. J. G., Rumchev V. G., Linear-feedback recruitment policies for constant size manpower systems, IMA J. Mathematics Applied in Business and Industry, 6, 1990, 313-328.
  • [20] Minc H., Nonnegative Matrices, John Wiley, Canada 1988.
  • [21] Berman A., Plemmons R., Nonnegative Matrices in Mathematical Sciences, SIAM , Philadelphia 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW4-0002-0098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.