PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Data mining-generation and visualisation of decision trees

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A computer system presented in the paper is developed as a data mining tool-it allows using large databases as a source for the process of decision tree generation and visualisation. The designed system (DTB&V-Decision Tree Builder and Visualiser) is able to perform data preprocessing, generation of decision trees followed by their post-processing and visualisation. DTB&V was tested using a number of databases commonly employed for such tasks.
Czasopismo
Rocznik
Strony
63--84
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Department of Computer Science, Wrocław, Universit of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Computer Science, Wrocław, Universit of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] ADRIAANS P., DOLFZ., Data Mining, Addison-Wesley, 1996.
  • [2] AGRAVAL R., GHOSH S., IMIELINSKI T., IYER B., SWAMI A., An Interval Classifier for Database Mining Applications, VLDB 92, Vancouver 1992, 560-573.
  • [3] AGRAVAL R., IMIELINSKI T., SWAMI A., Data mining: A performance perspective, IEEE Transactions on Knowledge and Data Engineering, 1993.
  • [4] AGRAVAL R., IMIELINSKI T., SWAMI A., Mining association rules between sets of items in large data­ bases, Proceedings of the 1993 International Conference on Management of Data, 1993.
  • [5] AGRAVAL R., SRIKANT R., Fast algorithms for mining association rules in large databases, VLDB ’94, 1994.
  • [6] AGRAVAL R., SRIKANT R., Mining Sequential Patterns: Generalisations and Performance Improvements, Research Report, IBM Almaden Research Center.
  • [7] AGRAVAL R., SRIKANT R., Mining Sequential Patterns, Research Report, IBM Almaden Research Center.
  • [8] CICHOSZ P., Systemy uczące się, (Machine Learning Systems), WNT Warsaw, 2000.
  • [9] Database TCPIP - http://kdd.ics.uci.edu/databases/kddcup99.
  • [10] Databases STATLOG - http://www.ics.uci.edu/~mlearn/MLRepository.html.
  • [11] DOCZEKALSKI M., Techniki pozyskiwania wiedzy z baz danych, (Data Mining Techniques), Master Thesis, Department of Computer Science, Wrocław 2001.
  • [12] FAYYAD U. M., PIATETSKY-SHAPIRO G., SMYTH P., UTHURUSAMY R., Advances in Knowledge Discovery and Data Mining, Cambridge MA, 1996.
  • [13] GORAWSKI M., Data Warehouse: Systemy Wspomagania Podejmowania Decyzji, (Decision Support Systems), Software 5/99.
  • [14] GORAWSKI M., FRĄCZAK J., Data Warehouse: Analiza porównawcza MOLAP i ROLAP, (Comparison of MOLAP and ROLAP), Software 8/99.
  • [15] GORAWSKI M., FRĄCZAK J., Data Warehouse: Modelowanie danych, (Data modeling), Software 7/99.
  • [16] GORAWSKI M., KONOPACKI A., Data Warehouse: Architektura, (Architecture), Software 6/99. [17] GORAWSKI M., KOZIATEK A., Data Warehouse: Ekstrakcja danych, (Data extraction), Software 9/99
  • [18] GRABMEIER J„ RUDOLPH A., Techniques of Cluster Algorithms in Data Mining version 2.0, IBM Informationssysteme GmbH, 1998.
  • [19] HOLSHEIMER M., SIEBES A., Data Mining. The Search for Knowledge in Databases, 1996.
  • [20] HOUTSMA M., SWAMI A., Set-oriented mining of association rules, Research Report. IBM Almande Research Center, 1993.
  • [21] IBM’s Data Mining Technology, White Paper, 1996.
  • [22] Librery STŁPort wersja 3.2.1 - http://www.stlport.org.
  • [23] MANNILA H., TOIVONEN H., VERKAMO I. A., Discovery of frequent episodes in event sequence University of Helsinki, 1997.
  • [24] MANNILA H., TOIVONEN H., VERKAMO I. A., Efficient Algorithms for Discovering Association Rule AAAI Workshop on Knowledge Discovery in Databases, 1994.
  • [25] MEHTA M., AGRAWAL R., RISANEN J., SLIQ: A fast scalable classifier for data mining, Proceeding of the Fifth International Conference on Extending Database Technology, Avignon 1996.
  • [26] MEHTA M., RISSANEN J., AGRAWAL R., MDL-based decision tree pruning, International Conference on Knowledge Discovery in Databases and Data Mining, Montreal 1995.
  • [27] MITCHELL T. M., Machine Learning, McGraw-Hill Series in Computer Science, 1997.
  • [28] MICHIE D., SPIEGELHALTER D. J., TAYLOR C. C., Machine Learning, Neural and Statistical Classification, 1994.
  • [29] NASA Ames Res, “Introduction to IND Version 2.1”, 1992.
  • [30] PIATETSKY-SHAPIRO G., FRAWLEY W., Knowledge Discovery from Databases, Cambridge MA, 1991
  • [31] Program MineSet 3.1, Silicon Graphics - http://www.sgi.com/software/mineset.
  • [32] QUINLAN J. R., Induction of decision trees, Machine Learning, 1986.
  • [33] RDBMS Interbase 6.0 OpenSource - http://www.inprise.com/interbase.
  • [34] SHAFER J. C., AGRAVAL R., MEHTA M., SPRINT: A scalable parallel classifier for data mining Proceedings of the 1996 International Conference on Very Large Databases, Bombay 1996.
  • [35]SRIKANT R„ AGRAVAL R„ Mining Generalized Association Rules, Proceedings of the 21st International Conference on Very Large Databases, September 1995.
  • [36] SRIKANT R., VU Q., AGRAWAL R., Mining Association Rules with Item Constraints, AAAI, 1997. I [37] STOLFO J. S., FAN W., LEE W., PRODROMIDIS A., CHAN P. K., Cost-based Modeling and Evaluate for Data Mining With Application to Fraud and Intrusion Detection: Results from the JAM Project 1999.
  • [38] TOIVONEN H., KLEMETTINEN M., RONKAINEN P., HATÓNEN K., MANNILA H., Pruning and Groupie Discovered Association Rules, University of Helsinki.
  • [39] VENTURA D., On Discretisation as a Preprocessing Step for Supervised Learning Methods, Thesis presented to Department of Computer Science at Brigham Young University, 1995.
  • [40] WALLACE C., PATRICK J., Coding decision trees, Machine Learning, 1993.
  • [41] XIAOLIN WU, WITTEN IAN H., A Fast K-Means Type Clustering Algorithm, University of Calgary 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW4-0002-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.