Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a comparison of the biotechnological process prediction and optimization results obtained by using different structure hybrid mathematical models for modeling of the same bioprocess. The hybrid models under investigation consist of the product mass balance equation in which different means - an artificial neural network, fuzzy-neural network and cell age distribution based calculation scheme - are incorporated for modeling the specific biosynthesis rate of a desired product. Experimental data from alpha -amylase laboratory and industrial fermentation processes are used for model parameter identification and the process prediction tests.
Czasopismo
Rocznik
Tom
Strony
115--123
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Kaunas University of Technology, Process Control Department, Studentu St. 50, LT-3031 Kaunas, Lithuania
autor
- Kaunas University of Technology, Process Control Department, Studentu St. 50, LT-3031 Kaunas, Lithuania
Bibliografia
- [1] Biriukov V. V., Kantere V. M., Optimization of batch processes of microbiological synthesis Moscow, “Nauka”, 1985, 292, (in Russian).
- [2] KINOSHITA S., OKADA H., TERUI G., Kinetic studies of enzyme production by microbes. II Process kinetics of a-amylase production by Bacillus subtilis, J Ferment. Technol., Vol. 45, 1967, 504-510.
- [3] LEVISAUSKAS D., PLASKUTE V., Modeling and optimization of secondary metabolites production in fed-batch biotechnological processes based on physiologically active biomass concept, ISSN 1392- 124X, Information Technology and Control, Kaunas, Technology, No 1(10), 1999, 33-36.
- [4] PORTO V. W., FOGEL D. B., FOGEL L. J., Alternative neural network training methods, IEEE Expert, 1995, 16-22.
- [5] PREUSTING H., NOORDOVER J., SIMUTIS R., LUEBBERT A., The use of hybrid modeling for the optimization of the penicillin fermentation process, Chimia, Vol. 50(9), 1996, 416-417.
- [6] SIMUTIS R., DORS M., LUEBBERT A., Bioprocess optimization and control: application of hybrid modeling, J. Biotechnology, Vol. 42, 1995, 285-290.
- [7] SIMUTIS R., HAVLIK I., LUEBBERT A., Fuzzy aided neural network for real time state estimation and process prediction in a production scale beer fermentation, J. Biotechnology, Vol. 27, 1993, 203-215.
- [8] TERUI G., OKAZAKI M., KINOSHITA S., Kinetic studies on enzyme production by microbes: On kinetic models, J. Ferment. Technol., Vol. 45, 1967, 497-503.
- [9] WANG L. X., Adaptive fuzzy systems and control, Prentice Hall, Englewood Cliffs, 1996, 232.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW4-0002-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.