PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and characterization of nanocarbons for hydrogen storage

Identyfikatory
Warianty tytułu
Konferencja
Workshop on Functional Materials FMA 2004, Athens, Greece, 23-26 September 2005
Języki publikacji
EN
Abstrakty
EN
Carbon nanomaterials have been pronounced as the most prospective material family for nanoelectronic applications, as well as materials for hydrogen storage. The catalytic methods we used for preparing different carbon nanoforms have been presented. During the study, a catalyst system composed of alkaline support and supported iron has been used. The effect of synthesis conditions and the carbon source material have been emphasised. The properties of the materials across the synthesis route have been studied by various instrumental techniques (i.e., ICP, SEM, FT-IR, low temperature nitrogen adsorption). The role of the catalyst is shown. Synthesized materials before as well as after the purification processes have been found to be very promising for hydrogen storage.
Wydawca
Rocznik
Strony
915--921
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Centre for Knowledge Based Nanomaterials and Technologies KnowMatTech, Department of Hydrogen Technologies and Nanomaterials, Institute of Chemical and Environment Engineering, Szczecin University of Technology, 70-310 Szczecin,, rk@ps.pl
Bibliografia
  • [1] IIJIMA S., Nature, 354 (1991), 56.
  • [2] LIU C., FAN Y.Y., LIU M., CONG H.T., CHENG H.M., DRESSELHAUS M.S., Science, 286 (1999), 1127.
  • [3] YE Y., AHN C.C., WITHAM C., FULZ B., LIU J.RINZLER A.G., COLBERT D., SMITH K.A., SMALLEY R.E., Appl. Phys. Lett., 74 (1999), 2307.
  • [4] SIMONYAN V.V., DIEP P., JOHNSON J.K., J. Chem. Phys., 111 (1999), 9778. Nanocarbons for hydrogen storage 921
  • [5] GUO T., NIKOLAEV P., THESS A., COLBERT D.T., SMALLEY R.E., Chem. Phys. Lett., 243 (1995), 49.
  • [6] JOURNET C., MASER W.K., BARNIER P., LOISEAU A., Nature, 388 (1997), 756.
  • [7] NIKOLAEV P., BRONIKOWSKI M.J., BRADLEY R.K., ROHMUND F., COLBER D.T.T, SMITH K.A.,SMALLEY R.E., Chem. Phys. Lett., 313 (1999), 91.
  • [8] CASSEL A., RAYMAKERS J., KONG J., DAI H., J. Phys. Chem., 103 (1999), 6484.
  • [9] RINZLER A.G., LIU J., DAI H., HUFFMAN C.B., RODRIGUEZ-MACIAS F., BOUL P.J., LU A.H., HEYMANN D., COLBERT D.T., LEE R.S., FISCHER J.E., RAO A.M., EKLUND P.C., SMALLEY R.E., Appl. Phys. A, 67 (1998), 29.
  • [10] HERNADI K., FONSECA A., NAGY J.B., BERNAERT D., RIGA J., LUCAS A., Synth. Met., 77 (1996), 31.
  • [11] DETLAFF-WEGLIKOWSKA U., ROTH S., [in:] H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.), Electronic Properties of Molecular Nanostructures, AIP Conference Proceedings, 591 (2001), 171.
  • [12] CHIANG I.W., BRINSON B.E., SMALLEY R.E., MARGRAVE J.L., HAUGE R.H., J. Phys. B, 105 (2001), 1157.
  • [13] JEONG T., KIM W.-K., HAHN Y.-B., Chem. Phys. Lett., 344 (2001), 18.
  • [14] HERNADI K., SISKA A., THIEN-NGA L., FORRO L., KIRICSI I., Solid State Ionics, 203 (2001), 141.
  • [15] PARK Y.S., CHOI Y.C., KIM K.S., CHING D.-C., BAE D.J., AN K.H., LIM S.C., ZHU X.Y., LEE Y.H., Carbon, 39 (2001), 655.
  • [16] ZHANG M., YUDASAKA M., NIHEY F., IIJIMA S., Chem. Phys. Lett., 328 (2000), 350.
  • [17] COUTEAU E E., HERNADI K., SEO J.W., THIÊN-NGA, L., MIKÓ CS., GAÁL R., FORRÓ L., Chem. Phys. Lett., 378 (2003), 9.
  • [18] KALEŃCZUK R.J., BOROWIAK-PALEN E., Przemysł Chemiczny, 82 (2003), 149.
  • [19] KALEŃCZUK R.J., BOROWIAK-PALEŃ E., Polish J. Chem. Technol., 3 (2001), 6.
  • [20] DILLON A.C., JONES K.M., BEKKEDAHL T.A., KIANG C.H., BETHUNE D.S., HEBEN M.J., Nature, 386 (1997), 377.
  • [21] CHAMBERS A., PARK C., BAKER R.T.K., RODRIGUEZ N.M., J. Phys. Chem. B, 102 (1998), 4253.
  • [22] CHEN P., WU X., LIN M., TAN K.L., Science, 285 (1999), 91.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0022-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.