PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanogel formation by intrachain radiation-induced cross-linking. Simulation and experiment

Identyfikatory
Warianty tytułu
Konferencja
International Seminar Nanomaterials-Simulations and Experiments , Łódź, 15-16 April 2005
Języki publikacji
EN
Abstrakty
EN
Nanogel formation by intrachain radiation-induced cross-linking is described. The origin of dispersive kinetics observed in pulse radiolysis experiments and the influence of cross-linking method on nanogel structure are studied by the Monte-Carlo simulation. The simulations have been performed on an fcc lattice using the cooperative motion algorithm. The recombination kinetics is studied as a function of the chain length (20-1068 beads) and of the number of radicals generated per chain. It is shown that the radical recombination rate coefficients are time-dependent (dispersive kinetics) and the simulation results can be fitted using single "stretched exponential" (KWW) function for two radicals per chain and a sum of two KWW functions for a larger number of radicals. The nanogel structure (radius of gyration and loop lengths, related to the resistance of nanogels to scissions) has also been studied. It is found that in the case of instant radical generation, the increasing number of radicals leads to formation of smaller and smaller loops. Results of the simulations are compared with the pulse radiolysis experiment on poly(ethylene oxide) using a suitable scaling of MC time and unit length, and a good agreement is obtained.
Wydawca
Rocznik
Strony
467--476
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
  • Institute of Applied Radiation Chemistry, Technical University of Łódź, ul. Wróblewskiego 15, 93-590 Łódź, Poland, jkjeszka@cbmm.lodz.pl
Bibliografia
  • [1] FUNKE W., OKAY O., JOOS-MÜLLER B., Adv. Polym. Sci., 136 (1998), 139.
  • [2] ULANSKI P., ROSIAK J.M., Polymeric Nano- and Microgels, [in:] H.S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, Stevenson Ranch, CA, 2004, Vol. 8, p. 845.
  • [3] BRASCH U., BURCHARD W., Macromol. Chem. Phys., 197 (1996), 223.
  • [4] ULANSKI P., JANIK I., ROSIAK J.M., Radiat. Phys. Chem., 52 (1998), 289.
  • [5] ULANSKI P., ROSIAK J.M., Nucl. Instr. Meth., B 151 (1999), 356.
  • [6] KADLUBOWSKI S., GROBELNY J., OLEJNICZAK W., CICHOMSKI M., ULANSKI P., Macromolecules, 36 (2003), 2484.
  • [7] ARNDT K.-F., SCHMIDT T., REICHELT R., Polymer, 42 (2001), 6785.
  • [8] ULANSKI P., ZAINUDDIN, ROSIAK J.M., Radiat. Phys. Chem., 46 (1995), 917.
  • [9] ULANSKI P., KADLUBOWSKI S., ROSIAK J.M., Radiat. Phys. Chem., 63 (2002), 533.
  • [10] PLONKA A., Dispersive Kinetics, Kluwer Acad. Publ., Dordrecht, 2001.
  • [11] ULANSKI P., ZAINUDDIN, ROSIAK J.M., Radiat. Phys. Chem., 46 (1995), 913.
  • [12] PAKULA T., Macromolecules, 20 (1987), 679.
  • [13] PAKULA T., GEYLER S., Macromolecules, 20 (1987), 2909.
  • [14] PAKULA T., JESZKA K., Macromolecules, 32 (1999), 6821.
  • [15] JESZKA J.K., KADLUBOWSKI S., ULANSKI P., Macromolecules, 39 (2006), 857.
  • [16] BORODIN O., BEDROV D., SMITH G.D., Macromolecules, 34 (2001), 5687.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0021-0069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.