PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen atoms at the palladium surface, at the MgO surface and at the Pd-MgO metal-support boundary. Towards computer modelling of the spillover effect

Identyfikatory
Warianty tytułu
Konferencja
International Seminar Nanomaterials-Simulations and Experiments , Łódź, 15-16 April 2005
Języki publikacji
EN
Abstrakty
EN
The work is devoted to computer modelling of interactions of atomic hydrogen with palladium and MgO surfaces, and with Pd atoms adsorbed on MgO surface. Quantum calculations were performed using the methods of the Density Functional Theory (DFT) with gradient-corrected functionals for electron exchange and correlation. The potential energy surfaces were calculated for a hydrogen atom interacting with Pd and MgO surfaces. The results indicate an easy (0.17 eV activation barrier) diffusion of hydrogen atoms over the metal surface. A possibility of migration of H atoms from the metal surface onto the MgO support surface (the "spillover effect") is discussed. It was found that the transfer of a hydrogen atom from the vicinity of a Pd atom to O sites of the MgO surface results in the energy gain of the order of 0.5 eV. The transfer, however, is an activated process with the activation energy about 0.8 eV.
Wydawca
Rocznik
Strony
421--432
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Institute of Applied Radiation Chemistry, Technical University of Łódź, ul. Wróblewskiego 15, 93-590 Łódź, joannas@mitr.p.lodz.pl
Bibliografia
  • [1] Spillover of Adsorbed Species G.M. Pajonk, S.J. Teichner, J.E. Germain (Eds.), Elsevier, Amsterdam, 1983.
  • [2] YOSHIDA S., SAKAKI S., KOBAYASHI H., Electronic Processes in Catalysis, Wiley-VCH, New York, 1994.
  • [3] Transition State Modeling for Catalysis, D.G. Truhlar, K. Morokuma (Eds)., ACS Symposium Series vol. 215, American Chemical Society, Washington, 1999.
  • [4] KOCH W., HOLTHAUSEN M. C., A Chemist’s Guide to Density Functional Theory, Wiley-VCH, New York, 2000.
  • [5] GROSS A., Theoretical Surface Science. A Microscopic Perspective, Springer, Berlin, 2003.
  • [6] EFREMENKO I., J. Molecular Catal. A, 173 (2001), 19.
  • [7] PAUL J.-F., SAUTET P., Phys. Rev. B, 53 (1996), 8015.
  • [8] LØVVIK O. M., OLSEN R.A., Phys. Rev. B, 58 (1998), 10890.
  • [9] DONG W., HAFNER J., Phys. Rev. B, 56 (1997), 15396.
  • [10] LEDENTU V., DONG W., SAUTET P., Surface Sci., 413 (1998), 518.
  • [11] DONG W., KRESSE G., HAFNER J., J. Mol. Catalysis A, 119 (1997), 69.
  • [12] OKUYAMA H., SIGA W., TAKAGI N., NISHIJIMA M., ARUGA T., Surface Sci., 401 (1998), 344.
  • [13] HASS G., MENCK A., BRUNE H., BARTH J. V., VENABLES J.A., KERN K., Phys. Rev. B., 61 (2000), 11105.
  • [14] LOPEZ N., ILLAS F., ROSCH N., PACCHIONI G., J. Chem. Phys., 110 (1999), 4873.
  • [15] MUSOLINO V., SELLONI A., CAR R., J. Chem. Phys., 108 (1998), 5044.
  • [16] PACCHIONI G., ROSCH N., J. Chem. Phys., 104 (1996), 7329.
  • [17] GIORDANO L., GONIAKOWSKI J., PACCHIONI G., Phys. Rev. B, 64 (2001), 075417.
  • [18] VERVISCH W., MOTTET C., GONIAKOWSKI J., Phys. Rev. B, 65 (2002), 245411.
  • [19] RICCI D., PACCHIONI G., SUSHKO P. V., SHLUGER A., J. Chem. Phys., 117 (2002), 2844.
  • [20] NEYMAN K. M., ROSCH N., PACCHIONI G., Appl. Catal. A., 191 (2000), 3.
  • [21] Gaussian 98 (Revision A.9), Gaussian Inc., Pittsburgh PA, 1998.
  • [22] DUNNING T.H., HAY P.J., [in:] Modern Theoretical Chemistry; H.F. Schaeffer III (Ed.), Plenum, New York, 1976, p. 1.
  • [23] HAY P.J., WADT W.R., J. Chem. Phys., 82 (1985), 270; 284; 299.
  • [24] Hydrogen in Metals, Vol. I, II, G. Alefeld, J. Volkl (Eds.), Springer, Berlin, 1978.
  • [25] BARTCZAK W. M., STAWOWSKA J., Struct. Chem., 15 (2004), 451.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0021-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.