PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy clustering with spatial constraints for image thresholding

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Image thresholding plays an important role in image segmentation. This paper presents a novel fuzzy clustering based image thresholding technique, which incorporates the spatial neighborhood information into the standard fuzzy c-means (FCM) clustering algorithm. The prior spatial constraint, which is defined as weight in this paper, is inspired by the k-nearest neighbor (k-NN) algorithm and is modified from two aspects in order to improve the performance of image thresholding. The algorithm is initialized by a fast FCM algorithm, in which the iteration is carried out with the statistical gray level histogram of image instead of the conventional whole data of image; therefore its convergence is fast. Extensive experiment results and both qualitative and quantitative comparative studies with several existing methods on the thresholding of some synthetic and real images illustrate the effectiveness and robustness of the proposed algorithm.
Czasopismo
Rocznik
Strony
943--954
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
autor
  • Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
autor
  • Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
Bibliografia
  • [1] Fu K.S., Mui J.K., A survey on image segmentation, Pattern Recognition 13(1), 1981, pp. 3-16.
  • [2] Sahoo P.K., SoLTANi S., Wong A.K.C., A survey of thresholding techniques, Computer Vision, Graphics, and Image Processing 41(2), 1988, pp. 233-60.
  • [3] Sezgin M., Sankur B., Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging 13(1), 2004, pp. 146-68.
  • [4] Otsu N., a threshold selection method from gray level histograms, IEEE Transactions on Systems, Man and Cybernetics 9(1), 1979, pp. 62-6.
  • [5] Kittle J., Illingworth J.,Minimum error thresholding, Pattern Recognition 19(1), 1986, pp. 41-7.
  • [6] Pun T., A new methodfor gray level picture thresholding using the entropy of the histogram, Signal Processing 2(3), 1980, pp. 223-37.
  • [7] Kapur J.N., Sahoo P.K., Wong A.K.C., A new method for gray level picture thresholding using the entropy of the histogram, Computer Vision, Graphics, and Image Processing 29(3), 1985, pp. 273-85.
  • [8] Abutaleb A.S., Automatic thresholding of gray-level pictures using two-dimensional entropy, Computer Vision, Graphics, and Image Processing 47(1), 1989, pp. 22-32.
  • [9] Brink A.D., Thresholding of digital images using two-dimensional entropies, Pattern Recognition 25(8), 1992, pp. 803-8.
  • [10] Chen W.T., Wen C.H., Yang C.W., A fast two-dimensional entropic thresholding algorithm, Pattern Recognition 27(7), 1994, pp. 885-93.
  • [11] Gong J., Li L., Chen W., Fast recursive algorithms for two-dimensional thresholding, Pattern Recognition 31(3), 1998, pp. 295-300.
  • [12] Jawahar C.V., Biswas P.K., Ray A.K., Investigations on fuzzy thresholding based on fuzzy clustering, Pattern Recognition 30(10), 1997, pp. 1605-13.
  • [13] Cheng H.D., Chen J., Li J., Thresholding selection based on fuzzy c-partition entropy approach, Pattern Recognition 31(7), 1998, pp. 857-70.
  • [14] Zhao M., Fu A.M.N., Yan H., A technique of three level thresholding based on probability partition and fuzzy 3-partition, IEEE Transactions on Fuzzy Systems 9(3), 2001, pp. 469-79.
  • [15] Chi Z., Yan H., Pham T.D., Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition, World Scientific Publishing 1996.
  • [16] Cover T.M., Hart P.E., Nearest neighbor pattern classification, IEEE Transactions on Information Theory 13(1), 1967, pp. 21-7.
  • [17] Bezdek J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York 1981.
  • [18] Tou Julius T., Pattern Recognition Principles, Addison-Wesley Company 1974.
  • [19] Edelstein W.A., Bottomley P.A., Pfeifer L.M., A signal-to-noise calibration procedure for NMR imaging systems, Medical Physics 11(2), 1984, pp. 180-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0020-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.