PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Struktura, właściwości magnetyczne i pole krystaliczne w potrójnych chalkogenkach lantanowców i talu TlLnx2 (X = S, Se lub Te)

Autorzy
Identyfikatory
Warianty tytułu
EN
Structure, properties and crystal field in triple lanthanide and thallium chalcogenides TlLnX2 (X = S, Se or Te)
Języki publikacji
PL
Abstrakty
PL
Praca zawiera wyniki badań magnetycznych potrójnych chalkogenków lantanowców i talu TlLnX2, gdzie Ln oznacza lantanowiec, a X - siarkę, selen lub tellur. Wszystkie one, poczynając od neodymu, krystalizują w trygonalnej strukturze typu a-NaFeO2. Jest to struktura warstwowa, w której jony Ln3+ występują w otoczeniu sześciu jonów X2- tworzących nieznacznie zdeformowany (spłaszczony wzdłuż osi trójkrotnej) oktaedr. Z zależności namagnesowania od indukcji magnetycznej (0-14 T) wyznaczono parametry pola krystalicznego, stosując prosty model, w którym deformacja pola oktaedrycznego wyraża się jednym parametrem pola drugiego rzędu B20. Zależny od symetrii otoczenia czynnik geometryczny tego parametru maleje wyraźnie przy przejściu od lekkich do ciężkich lantanowców, zgodnie ze zmniejszaniem się krystalograficznej deformacji poliedrów koordynacyjnych LnX6. Dowodzi to słuszności zastosowanego prostego modelu pola krystalicznego. Związki gadolinu badano także metodą elektronowego rezonansu paramagnetycznego. Porównanie wyznaczonej eksperymentalnie dla TlGdSe2 i obliczonej granicy wysokotemperaturowej szerokości linii EPR sugeruje występowanie w tym związku helikoidalnego uporządkowania magnetycznego, wcześniej wykrytego wśród izostrukturalnych związków chromu(III).
EN
A large group of the ternary lanthanides and thallium dichalcogenides TlLnX2 (Ln = lanthanide, X = S, Se, or Te) were investigated. Because of the high volatility of thallium chalcogenides (the compounds can decompose during a long heating above 670 K) the unique methods of synthesis were elaborated. TlCeSe2 and TlCeTe2 are tetragonal, whereas the compounds containing neodymium and the heavier lanthanides crystallize in the rhombohedral structure of the alpha-NaFeO2 type. Praseodymium compounds were not obtained as a pure phase - all experiments gave a mixture of rhombohedral and tetragonal phases. The high field magnetization of the compounds (up to 14 T) was measured. From the magnetic induction dependence of magnetization the crystal field acting on the lanthanide ions were estimated. The gadolinium compounds TlGdS2 and TlGdSe2 were investigated by the EPR method. The first coordination sphere of Ln3+ ions in alpha-NaFeO2 type structure contains six chalcogenide ions X2-. It was proved by X-ray analysis that they form an octahedron only slightly shrinked along the threefold axis. Thus, the octahedral crystal field model was assumed with the additional parameter B20 containing the entire deformation. The parameters of crystal field were calculated from the magnetic field dependence of magnetization. Such a method is rarely used because high fields are hardly available and the calculations are much more laborious than e.g. magnetic susceptibility calculations. This requires a simultaneous diagonalization of the crystal field and magnetic field (Zeeman effect) interactions, whereas Van Vleck formula is usually sufficient for calculating the magnetic susceptibility. The octahedral part of the Hamiltonian (described by the geometrical coefficients changes rather little for sulfides, selenides and tellurides. On the other hand, the geometrical coefficients of the second order crystal field parameters decrease markedly on going from the light to heavy lanthanides, along with diminishing the deformation of LnX6 polyhedra. This proves that the simple crystal field model, employed to interpret the magnetic properties of the rhombohedral TlLnX2 compounds, explains satisfactorily the relationship of the crystallographic distortion and the deformation of the octahedral crystal field influencing the Ln3+ ions. The magnetic susceptibility measurements did not reveal directly a magnetic order in TlLnX2 compounds, According to de Gennes rule, the gadolinium compounds should have the highest ordering temperatures. In fact, the temperature dependences of reciprocal susceptibility of TlGdS2 and TlGdSe2 deviate from straight lines below 20 K. The alpha-NaFeO2 structure is a typical layer structure and a long-range magnetic order may not appear despite a relatively strong exchange interactions. On the other hand, these interactions strongly influence the EPR lineshape. The temperature dependence of the EPR linewidth was measured for TlGdS2 and TlGdSe2, but the interpretation of the results for the sulfide failed because of irregularities in TlGdS2 spectra. The TlGdSe2 resonance linewidth decreases below 15 K likewise in nonmetallic layer ferromagnets (K2CuF4, CrBr3, CdCr2Se4). From the DELTA B(T) dependence the temperature of magnetic ordering was estimated. Then the high-temperature limit of the EPR linewidth was calculated, using the classical Van Vleck method, taking into account magnetic exchange and dipole interactions. Two possible models were considered: (i) three-dimensional, with the exchange integral J1 between the nearest neighbours in the Gd3+ layer and J2 with the nearest neighbours in adjoint layers, and (ii) by analogy to the isostructural chromium compounds - the model of a helicoidal spins arrangement with the modulation period noncommensurate with the lattice constants. The second model gave the better agreement of the calculated and the experimental TlGdSe2 linewidths. The results may be improved after taking into account the preferred orientation of the sample (confirmed by the X-ray measurements).
Twórcy
autor
  • Instytut Chemii Nieorganicznej i Metalurgii Pierwiastków Rzadkich, Wydział Chemii Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław.
Bibliografia
  • [1] Nomenklatura chemii nieorganicznej. Zalecenia 1990. Stasicka Z. (red.) Wrocław 1998. Wydawnictwo Uniwersytetu Wrocławskiego. s.55
  • [2] LOMBARDI J.R., DAVIS B., Periodic Properties of Force Constants of Small Transition-Metal and Lanthanide Clusters, Chem. Rev. 102 (2002) 2431.
  • [3] HERBST J.F., WILKINS J.W., Calculation of 4f excitation energies in the metals and relevance to mixed valence systems, Gschneidner K.A. Jr. and Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 10, Amsterdam 1979, Elsevier, s. 323.
  • [4] JAYARAMAN A., Valence Changes in Compounds, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 2, Amsterdam 1987, North-Holland, s. 575.
  • [5] MOLANDER G.A., HARRIS CH.R., Sequencing Reactions with Samarium(II) Iodide, Chem. Rev. 99 (1996) 307.
  • [6] KABRÉ S., JULIEN-POUZOL M., GUITTARD M., Étude cristallographique des combinaisons ternaires formées par le thallium, les terres rares et le soufre, le sélénium ou le tellure, le long des binaires Tl2X–L2X3, Bull. Soc. Chim. France 9–10 (1974) 1881.
  • [7] ELISEEV A.A., KUZMICHYEVA G.M., Phase equilibrium and crystal chemistry in rare earth ternary systems with chalcogenide elements, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 13, Amsterdam 1990, Elsevier, s. 191.
  • [8] MITCHELL K., IBERS J.A., Rare-Earth Transition-Metal Chalcogenides, Chem. Rev. 102 (2002) 1929.
  • [9] ENGELSMAN F.M.R., WIEGERS G.A., JELLINEK F., VAN LAAR B., Crystal Structures and Magnetic Structures of Some Metal(I) Chromium(III) Sulfides and Selenides, J. Solid State Chem. 6 (1973) 574.
  • [10] ROSENBERG M., KNÜLLE A., SABROVSKY H., PLATTE CHR., Magnetic properties and structure of some ternary chromium chalcogenides with thallium and silver, J. Phys. Chem. Solids 43 (1982) 87.
  • [11] MULAK J., GAJEK Z., The Effective Crystal Field Potential, Elsevier 2000, Amsterdam.
  • [12] GÖRLLER-WALRAND C., BINNEMANS K., Rationalization of crystal-field parametrization, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 23, Amsterdam 1996, Elsevier, s. 121.
  • [13] GARCIA D., FAUCHER M., Crystal field in non-metallic (rare earth) compounds, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 21, Amsterdam 1995, Elsevier, s. 263.
  • [14] JUDD B.R., Atomic theory and optical spectroscopy, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 11, Amsterdam 1988, Elsevier, s. 81.
  • [15] FULDE P.: Crystal Fields, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 2, Amsterdam 1979, North-Holland, s. 295.
  • [16] HUTCHINGS M.T., Point-Charge Calculations of Energy Levels of Magnetic Ions in Crystalline Electric Fields, Solid State Physics, F. Seitz, D. Turnbull (eds.), Vol. 16, Academic Press, New York, 1964, s. 227.
  • [17] EBISU S., MORITA H., NAGATA S., Influence of cubic crystal field on the magnetic susceptibility of defect-perovskite RTa3O9 (R = rare earth), J. Phys. Chem. Solids 61 (2000) 45.
  • [18] PALEWSKI T., SUSKI W., Pnictides and Chalcogenides II (Lanthanide Monochalcogenides), Landolt- Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, III/27b2: Magnetic Properties of Non-Metallic Inorganic Compounds Based on Transition Elements, H.P.J. Wijn (ed.), Berlin 1998, Springer.
  • [19] PALEWSKI T., SUSKI W., Pnictides and Chalcogenides II (Binary Lanthanide Polypnictides and Polychalcogenides), Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, III/27b3: Magnetic Properties of Non-Metallic Inorganic Compounds Based on Transition Elements, H.P.J. Wijn (ed.), Berlin 2000, Springer.
  • [20] VOGT A., MATTENBERGER K., Magnetic measurements on rare earth and actinide monopnictides and monochalcogenides, Gschneidner K.A. Jr., Eyring L., Lander G.H., Choppin G.R. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 17, Amsterdam 1993, Elsevier, s. 301.
  • [21] AMINOV L.K., MALKIN B.Z., TEPLOV M.A., Magnetic properties of nonmetallic lanthanide compounds, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 22, Amsterdam 1996, Elsevier, s. 295.
  • [22] WELLS A.F., Strukturalna chemia nieorganiczna, Warszawa 1993, PWN, tlenki – s. 511, siarczki – s. 683.
  • [23] RUSTAMOV P.G., ALIEV O.M., KURBANOV T.KH., Troinye khalkogenidy redkozemelnykh elementov, Baku 1981, Elm.
  • [24] EISENMANN B., SCHÄFER H., Sulfides, Selenides, Tellurides, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, III/14b: Structure Data of Elements and Intermetallic Phases, K.-H. Hellwege, A.M. Hellwege (eds.), Berlin 1986, Springer.
  • [25] HULLIGER F., Structural Chemistry of Layer-Type Phases, F. Lévy (ed.), Physics and Chemistry of Materials with Layered Structures, Dordrecht 1976, D. Reidel Publ. Company.
  • [26] OTHANI T., HONJO H., WADA H., Synthesis, order-disorder transition and magnetic properties of LiLnS2, LiLnSe2, NaLnS2 and NaLnSe2 (Ln = lanthanides), Mat. Res. Bull. 22 (1987) 829.
  • [27] BALLESTRACCI R., BERTAUT E.F., Étude cristallographique de sulfures de terres rares et de sodium, Bull. Soc. Franç. Minér. Crist. 87 (1964) 512.
  • [28] SCHLEID T., LISSNER F., Single crystals of NaMS2 (M = Ho–Lu) from reactions of the lanthanides with sulfur in the presence of NaCl, Eur. J. Solid State Inorg. Chem. 30 (1993) 829.
  • [29] MASUDA H., FUJINO T., SATO N., YAMADA K., WAKESHIMA M., Synthesis and crystal structure of alkali metal uranium sulfides, Li2US3 and Na2US3, J. Alloys Comp. 284 (1999) 117.
  • [30] BONGERS P.F., VAN BRUGGEN C.F., KOOPSTRA J., OMLOO W.P.F.A.M., WIEGERS G.A., JELLINEK F., Structures and magnetic properties of some metal(I) chromium(III) sulfides and selenides, J. Phys. Chem. Solids 29 (1968) 977.
  • [31] VAN LAAR B., ENGELSMAN F.M.R., The Magnetic Structure of KCrS2, J. Solid State Chem. 6 (1973) 384.
  • [32] GODZHAEV E.M., MAMEDOV W.A., ORUDZHEV K.D., ADILOV A.A., GUSEINOV G.D., MAMEDOV Z.F., Sistema TlInSe2–TlCeS2, Zh. Neorg. Khim. 23 (1978) 160.
  • [33] GUSEINOV G.D., MOOSER E., KERIMOVA E.M., GAMIDOV R.S., ALEKSEEV I.V., ISMAILOV M.Z., On Some Properties of TlInS2 (Se2, Te2) Single Crystals, Phys. Stat. Sol. 34 (1969) 33.
  • [34] KETELAAR J.A.A., T’HART W.H., MOEREL M., POLDER D., The Crystal Structure of TlSe, Thallous Thallic or Thallosic Selenide, Z. Krist. 101 (1939) 396.
  • [35] DUCZMAL M., PAWLAK L., The crystal field influence on magnetic susceptibilities of TlCeSe2 and TlCeTe2, J. Magn. Magn. Mat. 76-77 (1988)195.
  • [36] GODZHAEV E.M., RUSTAMOV P.G., MAMEDOV V.A., NAGEV A.B., Rentgenograficeskoie issledovanie i elektricheskie svoistva tviordykh rastvorov sistem TlInTe2–TlLnTe2 (Ln–La, Ce, Pr), Neorg. Mater. 22 (1986) 934.
  • [37] GODZHAEV E.M., NAZAROV A.M., Svoistva splavov sistem TlInX2–TlPrX2 (X–S, Se, Te), Neorg. Mater. 28 (1992) 1844.
  • [38] GODZHAEV E.M., NAZAROV A.M., MAMEDOVA S.I., DZHANGIROV A.IU., Tverdye rastvory w sisteme TlInS2–TlCeS2, Neorg. Mater. 37 (2001) 653.
  • [39] GODZHAEV E.M., ALLAKHAROV E.A., O nekotorykh osobennostiakh elektrofizicheskikh svoistv soedinenii TlLnX2 i Tl2InLnX4, gde Ln–La, Ce, Pr, Nd, Sm, Eu; X–S, Se, Te, Neorg. Mater. 32 (1996) 1338.
  • [40] ZEINALOV G.I., ZARBALIEV M.M., SARDAROVA N.S., Elektrofizicheskie svoistva splavov sistemy TlInS2–TlDyS2, Neorg. Mater. 35 (1999) 913.
  • [41] GODZHAEV E.M., ALIEV F.G., ZEIMANOV G.I., LIALIAKIN S.W., Elektrofizicheskie svoistva splavov sistemy TlInS2–TlEuS2, Neorg. Mater. 26 (1990) 40.
  • [42] GODZHAYEV E.M., GULIEV L A., SULEIMANOV A.M., Elektrofizicheskie svoistva soedineniya TlSmS2, Neorg. Mater. 26 (1990) 2655.
  • [43] BRONGER W., ELTER R., MAUS E., SCHMITT T., Ueber ternäre Sulfide mit Lanthanoiden und den Alkalimetallen Rubidium oder Cäsium, Rev. Chim. Minér. 10 (1973) 147.
  • [44] BRONGER W., BRÜGGEMANN W., VON DER AHE M., SCHMITZ D., Zur Synthese und Struktur ternärer Chalcogenide der Saltenen Erden ALnX2 mit A = Alkalimetall und X = Schwefel, Selen oder Tellur, J. Alloys Comp. 200 (1993) 205.
  • [45] PROKOFIEV A.V., SHELYKH A.I., MELEKH B.T., Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series, J. Alloys Comp. 242 (1996) 41.
  • [46] LUEKEN H., BRÜGGEMANN W., BRONGER W., FLEISCHHAUER J., Magnetic properties of NaCeS2 between 3.7 and 297 K, J. Less-Common Met. 65 (1979) 79.
  • [47] MASUDA H., FUJINO T., SATO N., YAMADA K., Electrical properties of Na2US3, NaGdS2 and NaLaS2, Mat. Res. Bull. 34 (1999) 1291.
  • [48] ELLISTON P.R., Electron paramagnetic resonance in NaCrS2, J. Phys. C7 (1974) 425.
  • [49] RICHARDS P.M., MÜLLER K.A., BOESCH H.R., WALDNER F., Electron spin resonance in a twodimensional compound with appreciable interplane coupling: NaCrS2, Phys. Rev. B10 (1974) 4531.
  • [50] RICHARDS P.M., SALAMON M.B., Exchange narrowing of electron spin resonance in a twodimensional system, Phys. Rev. B9 (1974) 32.
  • [51] VAN LAAR B., IJDO D.J.W., Preparation, crystal structure, and magnetic structure of LiCrS2 and LiVS2, J. Solid State Chem. 3 (1971) 590.
  • [52] GAUTAM U.K., SESHADRI R., VASUDEVAN S., MAIGNAN A., Magnetic and transport properties, and electronic structure of the layered chalcogenide AgCrSe2, Solid State Commun. 122 (2002) 607.
  • [53] RUSHBROOKE G.S., WOOD P.J., On the Curie points and high temperature susceptibilities of Heisenberg model ferromagnetics, Mol. Phys. 1 (1958) 257.
  • [54] WELZ D., NISHI M., Spin, exchange, and anisotropy in the covalent-chain antiferromagnet TlFeS2, Phys. Rev. B45 (1992) 9806.
  • [55] SEIDOV Z., KRUG VON NIDDA H.-A., HEMBERGER J., LOIDL A., SULTANOV G., KERIMOVA E., PANFILOV A., Magnetic susceptibility and ESR study of the covalent-chain antiferromagnets TlFeS2 and TlFeSe2, Phys. Rev. B65 (2001) 14433.
  • [56] GONDRAND M., BRUNEL M., DE BERGEVIN F., Mise en Évidence d’un Nouveau Type de Surstructure NaCl; Structure des Composés TNaO2 (T = Dy, Ho, Y, Er), Acta Cryst. B28 (1972) 722.
  • [57] ALDZANOV M.A., NADZAFZADE M.D., Magnitnyj fazovyi perekhod w TlFeTe2, Fiz. Tv. Tela 32 (1990) 2494.
  • [58] KERIMOVA E.M., SADYKHOV R.Z., VELIEV R.K., Phase Relations in the TlSe–CoSe System and Magnetic Properties of TlCoSe2, Neorg. Mater. 37 (2001) 180.
  • [59] GUSEINOV G.D., KERIMOVA E.M., AGAMALIEV D.G., NADZHAFOV A.I., Diagramma sostojanija sistemy TlSe–TbSe, Neorg. Mater. 23 (1987) 1632.
  • [60] ABDULLAYEVA S.G., ALIEV V.A., Structural diagram of the TlSe–DySe system, Mat. Res. Bull. 16 (1981) 1219.
  • [61] POLTMANN F.E., HAHN H., Zu den Systemen Thallium–Lanthan–Chalkogen, Naturwiss. 58 (1971) 54.
  • [62] HUANG, F.Q., MITCHELL, K., IBERS, J.A., Properties of CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3, Inorg. Chem. 40 (2001) 5123.
  • [63] STÖWE K., Die Kristallstrukturen von ErSeI und NaErSe2, Z. anorg. allg. Chem. 623 (1997) 1639.
  • [64] DUCZMAL M., PAWLAK L., Magnetic properties of TlLnS2 compounds (Ln = Nd, Gd, Dy, Er and Yb), J. Alloys Comp. 209 (1994) 271.
  • [65] DUCZMAL M., PAWLAK L., Magnetic properties of TlLnS2 compounds (Ln = Tb, Ho and Tm), J. Alloys Comp. 219 (1995) 189.
  • [66] DUCZMAL M., PAWLAK L., Magnetic and structural characterization of TlLnSe2 compounds (Ln = Nd to Yb), J. Alloys Comp. 225 (1995) 181.
  • [67] DUCZMAL M., PAWLAK L., Magnetic properties and crystal field effects in TlLnX2 compounds (X = S, Se, Te), J. Alloys Comp. 262–263 (1997) 316.
  • [68] SATO M., ADACHI G., SHIOKAWA J., Preparation and structure of sodium rare-earth sulfides, NaLnS2 (Ln: rare earth elements), Mat. Res. Bull. 19 (1984) 1215.
  • [69] PIECHARSKII V.K., AKSELRUD L.G., ZAVALII P.YU., O metode uceta vlijanija prei orientacii (tekstury) v poroškovom obrazce pri issledovanii atomnoj struktury vesces Kristallografia 32 (1987) 874.
  • [70] VOGT O., Preparation and crystal growth of rare earth and actinide intermetallics, Physica B 130 (1985) 491.
  • [71] MORRISON C.A., LEAVITT R.P., Spectroscopic properties of triply ionized lanthanides in transparent host crystals, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, Amsterdam 1982, North-Holland, s. 461.
  • [72] JORGENSEN C.K., Influence of rare earths on chemical understanding and classification, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 11, Amsterdam 1988, Elsevier, s. 197.
  • [73] HENRY W.E., Some Magnetization Studies of Cr+++, Gd+++, Fe+++, and Cu++ in Low Temperatures and in Strong Magnetic Fields, Phys. Rev. 25 (1953) 163.
  • [74] COOPER B.R., Magnetic Properties of Compounds with Singlet Ground State: Exchange Correlation Effects, Phys. Rev. 163 (1967) 444.
  • [75] KIRCHMAYR H.R., POLDY C.A., Magnetic properties of intermetallic compounds of rare earth metals, Gschneidner K.A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 2, Amsterdam 1979, North-Holland, s. 69.
  • [76] ANDRÉ G., BOURÉE F., KOLENDA M., LEŚNIEWSKA B., OLEŚ A., SZYTUŁA A. Magnetic structures of RAgSb2 compounds, Physica B 292 (2000) 176.
  • [77] METHFESSEL S., MATTIS D.C., Magnetic Semiconductors, Wijn H.P.J. (ed.), Handbuch der Physik, Vol. XVIII/1, Berlin 1968, Springer, s. 526.
  • [78] LEA K.R., LEASK M.J.M., WOLF W.P., The Raising of Angular Momentum Degeneracy of f-electron Terms by Cubic Crystal Fields, J. Phys. Chem. Solids 23 (1962) 1381.
  • [79] AMORETTI G., BLAISE A., BOGÉ M., BONNISSEAU D., BURLET P., COLLARD J.M., FOURNIER J.M., QUÉZEL S., ROSSAT-MIGNOD J., LARROQUE L., Magnetic properties of the neptunium oxychalcogenides NpOZ (Z = S, Se), J. Magn. Magn. Mat. 79 (1989) 207.
  • [80] GAJEK Z., First-principles estimation of electronic structure of uranium oxychalcogenides UOY, Y = S, Se, Te. Application to the INS spectra of UOS, J. Phys.: Condens. Matter 12 (2000) 415.
  • [81] GINGRAS M.J.P., DEN HERTOG B.C., FAUCHER M., GARDNER J.S., DUNSIGER S.R., CHANG L.J., GAULIN B.D., RAJU N.P., GREEDAN J.E., Thermodynamic and single-ion properties of Tb3+ within the collective paramagnetic-spin liquid state of the frustrated pyrochlore antiferromagnet Tb2Ti2O7, Phys. Rev. B62 (2000) 6496.
  • [82] AYANT Y., BELORIZKY E., GUILLOT M., ROSSET J., Interprétation de l’aimanation du gallate d’erbiume en champ fort et a basse température, J. Physique 26 (1965) 385.
  • [83] CLAD R., BOUTON J.M., Magnetic properties of TbBe13, J. Phys. F11 (1981) 207.
  • [84] GERLOCH M., Magnetism and ligand-field analysis, Cambridge 1983, Cambridge University Press, s. 321.
  • [85] RUDOWICZ CZ., Transformation relations for the conventional Ok q and normalised O’kq Stevens operator equivalents with k = 1 to 6 and –k ≤ q ≤ k, J. Phys. C18 (1985) 1415.
  • [86] GERLOCH M., Magnetism and ligand-field analysis, Cambridge 1983, Cambridge University Press, s. 577.
  • [87] DEROUET J., BEAURY L., PORCHER P., Simulation of optical and magnetic properties of neodymium (4f 3) in the solid state: extreme sensitivity to the wave vector’s composition, J. Alloys Comp. 323– 324 (2001) 460.
  • [88] BUCKMASTER H.A., SHING Y.H., A Survey of the EPR Spectra of Gd3+in Single Crystals, Phys. Stat. Sol. A12 (1972) 325.
  • [89] DUCZMAL M., PAWLAK L., POKRZYWNICKI S., Magnetic properties of layer-type compounds TlGdS2 and TlGdSe2, Acta Phys. Polon. 97 (2000) 839.
  • [90] SUGAWARA K., HUANG C.Y., COOPER B.R., Paramagnetic resonance as a probe of exchange and crystal-field effects in singlet-ground-state systems, Phys. Rev. B11 (1975) 4455.
  • [91] BARAN M., NOVOTORTSEV V.M., SZYMCZAK H., The magnetic resonance in yttrium and gadolinium ortochromites near the phase transitions and up to 700 K, Acta Phys. Polon. A57 (1980) 43.
  • [92] SUGAWARA K., HUANG C.Y., COOPER B.R., Paramagnetic resonance of Gd3+ as a probe of exchange and crystal-field effects in rare-earth-metal pnictides: Antiferromagnetic and diluted materials, Phys. Rev. B28 (1983) 4955.
  • [93] POKRZYWNICKI S., SOLIK E., The Magnetic Resonance of Gd3+ in Gd2Se3 Near the Phase Transition and up to 300 K, Phys. Stat. Sol. A88 (1985) 619.
  • [94] POKRZYWNICKI S., MACHOWSKA E., DUCZMAL M., Gd3+ EPR study of the magnetic system Gd2Se3 + xGdSe, Mat. Sc. Forum 182–184 (1995) 747.
  • [95] MACHOWSKA E., POKRZYWNICKI S., DUCZMAL M., Magnetic properties and electron paramagnetic resonance spectra of CdGd2Se4, J. Phys.: Condens. Matter 4 (1992) 5339.
  • [96] DUCZMAL M., MOSINIEWICZ-SZABLEWSKA E., POKRZYWNICKI S., Electron Paramagnetic Resonance of Gd3+ in TlGdSe2, przyjęte do druku Phys. Stat. Sol. (2003).
  • [97] KIRSTE B., Least-Squares fitting of EPR Spectra by Monte Carlo Methods, J. Magn. Reson. 73 (1987) 213.
  • [98] WELLS A.F., Strukturalna chemia nieorganiczna, Warszawa 1993, PWN, s. 683.
  • [99] VAN VLECK J.H., The Dipolar Broadening of Magnetic Resonance Lines in Crystals, Phys. Rev. 74 (1948) 1168.
  • [100] VAN VLECK J.H., Line-Breadths and the Theory of Magnetism, Suppl. Nuovo Cimento 6 (1957) 993.
  • [101] YAMADA I., IKEBE M., Temperature and Frequency Dependence of the ESR Line Width in Two- Dimensional Ferromagnet K2CuF4, J. Phys. Soc. Japan 33 (1972) 1334.
  • [102] STANKOWSKI J., GRAJA A., Wstęp do elektroniki kwantowej Warszawa 1972, Wyd. Komunikacji i Łączności s 221
  • [103] ANDERSON P.W., WEISS P.R., Exchange Narrowing in Paramagnetic Resonance, Rev. Mod. Phys. 25 (1953) 269.
  • [104] KUBO R., TOMITA K., General theory of magnetic resonance absorption, J. Phys. Soc. Japan 9 (1954) 888.
  • [105] COLLINS M.F., MARSHALL W., Neutron scattering from paramagnets, Proc. Phys. Soc. 92 (1967) 390.
  • [106] BRUNEL M., DE BERGEVIN F., GONDRAND M., Determination theorique et domaines d’existence des differentes surstrctures dans les composes A3+B1+X2 2– de type NaCl, J. Phys. Chem. Solids 33 (1972) 1927.
  • [107] PLUG C.M., VERSCHOOR, The Crystal Structure of KCeS2, Acta Cryst. B32 (1976) 1856.
  • [108] GERLOCH M., MACKEY D.J., Single-crystal Magnetic Properties of Lanthanide Complexes. Part I. Tri-iodohexakis(antipyrine)ytterbium, J. Chem. Soc. (A) (1970) 3030.
  • [109] SHANNON R.D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A32 (1976) 751.
  • [110] DISMUKES J.P., WHITE J.G., Rare Earth Sesquiselenides and Sesquitellurides with the Sc2S3 Structure, Inorg. Chem. 4 (1965) 970.
  • [111] STÖWE K., Kristallstruktur, Leitfähigkeit und magnetishe Suszeptibilität von Er2Te3, Z. anorg. allg. Chem. 624 (1998) 872.
  • [112] DUCZMAL M., POKRZYWNICKI S., Magnetic properties of AgLnSe2 compounds (Ln = Ho, Er, Tm and Yb), J. Alloys Comp. 323-324 (2001) 513.
  • [113] JULIEN-POUZOL M., LARUELLE P., Structure Cristalline de ErAgSe2, Acta Cryst. B33 (1977) 1510.
  • [114] BENNER H., BOUCHER J.P., Spin Dynamics in the Paramagnetic Regime: NMR and EPR in Two-Dimensional Magnets, de Jongh L.J. (ed.), Magnetic Properties of Layered Transition Metal Compounds, Dordrecht 1990, Kluwer, s. 323.
  • [115] DE JONGH L.J., Introduction to Low-Dimensional Magnetic Systems, de Jongh L.J. (ed.), Magnetic Properties of Layered Transition Metal Compounds, Dordrecht 1990, Kluwer, s. 1.
  • [116] BLAZEY K.W., ROHRER H., Antiferromagnetic Phase Diagram and Magnetic Band Gap Shift of NaCrS2, Phys. Rev. 185 (1969) 712.
  • [117] HUBER D.L., Critical-Point Anomalies in the Electron-Paramagnetic-Resonance Linewidth and in the Zero-Field Relaxation Time of Antiferromagnets, Phys. Rev. B6 (1972) 3180.
  • [118] HUBER D.L., Spin-spin relaxation near the Curie point, J. Phys. Chem. Solids 32 (1971) 2145.
  • [119] KÖTZLER J., SCHEITHE W., Field and temperature dependence of critical magnetic relaxation in the anisotropic ferromagnet CrBr3, Phys. Rev. B18 (1978) 1306.
  • [120] KÖTZLER J., Universality of the dipolar dynamic crossover of cubic ferromagnets above TC, Phys. Rev. B38 (1988) 12027.
  • [121] YAMADA I., MORISHITA I., TOKUYAMA T., EPR experiments on the two-dimensional Heisenberg ferromagnet K2CuF4, Physica B115 (1983) 179.
  • [122] KÖTZLER J., VON PHILIPSBORN H., Critical Speeding-Up of Spin-Relaxation in CdCr2Se4, Phys. Rev. Lett. 40 (1978) 790.
  • [123] SEEHRA M.S., GUPTA R.P., Temperature dependence of the EPR linewidth of CrBr3 near TC, Phys. Rev. B9 (1974) 197.
  • [124] FLAX L., Thermodynamics of the Heisenberg Ferromagnet in an Applied Magnetic Field, Phys. Rev. B5 (1972) 977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0019-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.