PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Warstwy Langmuira-Blodgett i ich wykorzystanie w elektronice molekularnej

Autorzy
Identyfikatory
Warianty tytułu
EN
Langmuir-Blodgett films and their application to molecular electronics
Języki publikacji
PL
Abstrakty
PL
Omówiono metody wytwarzania oraz perspektywy zastosowania w elektronice molekularnej ultracienkich warstw złożonych z jednej lub kilku warstw monomolekularnych. Nawrót zainteresowania warstwami Langmuira-Blodgett (LB), zwłaszcza wśród badaczy zajmujących się nanotechnologią i inżynierią molekularną, tkwi w oferowanych przez technikę LB możliwościach operowania niewielkimi zbiorami cząsteczek o specyficznych, często zaprogramowanych właściwościach. W dwóch pierwszych rozdziałach monografii przedstawiono molekularny i termodynamiczny opis granicy faz oraz omówiono zagadnienia związane z napięciem powierzchniowym zarówno czystych cieczy jak i roztworów. Przedstawiono metody pomiaru napięcia powierzchniowego i szczegółowo omówiono stosowaną powszechnie w technice LB metodę płytki Wilhelmy'ego. Cząsteczki związku powierzchniowo czynnego zaadsorbowane na powierzchni cieczy tworzą powierzchniową warstwę Langmuira. Zmniejszenie powierzchni przypadającej na jedną cząsteczkę jest równoważne sprężaniu warstwy i prowadzi do gęściejszego upakowania cząsteczetc na powierzchni subfazy i przejścia warstwy w stan dwuwymiarowej cieczy. Dalsze sprężanie warstwy prowadzi do powstania stanu charakteryzującego się bardzo małą ściśliwością- dwuwymiarowego ciała stałego. Stan termodynamiczny oraz jakość otrzymanej warstwy określa izoterma sprężania, przedstawiająca zależność ciśnienia powierzchniowego od powierzchni przypadającej na pojedynczą cząsteczkę. Omówiono właściwości cząsteczek amfifilowych, tworzących warstwy Langmuira, oraz warunki laboratoryjne otrzymywania zarówno pojedynczych warstw LB, jak i układów wielowarstwowych. Przedstawiono zagadnienia związane z czystością materiałów i urządzeń, rozpościeraniem i sprężaniem monowarstwy oraz jej przenoszeniem na podłoża stałe. Na tle komercyjnych urządzeń do otrzymywania warstw, tzw. wanien LB, autor omawia wykonaną i oprogramowaną przez siebie i współpracowników wannę o stałym obwodzie, charakteryzującą się symetrycznym rozpływem materiału warstwy w trakcie badania izoterm sprężania oraz podczas nanoszenia warstwy na podłoże stałe. Opisano również wiele typów specyficznych cząsteczek oraz metody ich zastosowania do wytwarzania warstw LB o zaprojektowanych właściwościach. Opisane zagadnienia można zaliczyć do rozwijającej się intensywnie nauki o materiałach, której celem jest projektowanie cząsteczek o pożądanych właściwościach fizykochemicznych oraz weryfikacja właściwości zarówno samych cząsteczek, jak i ich zbiorów w postaci monomolekularnych warstw LB. Ważną rolę w projektowaniu cząsteczek odgrywają kwantowochemiczne badania modelowe. Badając izomeryzację cis-trans w azobenzenach, stwierdzono, że stosunkowo wysoka bariera rotacji wokół wiązania N=N w stanie gazowym znacznie obniża się po przyłączeniu protonu do jednego z atomów azotu wiązania azowego. Źródłem protonów w trakcie rozpościerania i nanoszenia warstw LB z subfazy wodnej są grupy karboksylowe używanych azobenzenów. Szczegółowe obliczenia barier reakcji izomeryzacji cis-trans w środowisku protycznym dla modelowych substancji - diazenu, dimetylodiazenu, azobenzenu (o ogólnym wzorze R1-NN-R2) oraz 4-fenyloazopirydyny pokazały, że geometrie stanu przejściowego zarówno formy neutralnej, jak i protonowanej są bardzo podobne, natomiast bariera izomeryzacji cis-trans po protonowaniu obniża się o wartość zależną od elektrofilowych właściwości podstawników i dodatnio naładowanych grup funkcyjnych, stabilizujących stan przejściowy. Podobny mechanizm może także występować w azobenzenach typu push-pull, używanych jako materiały w optyce nieliniowej. Opisano badania przemian strukturalnych zachodzących w warstwach LB i omówiono stabilność wytworzonych warstw, poddając szczegółowej analizie strukturę łańcuchów węglowodorowych na granicy faz gaz-ciecz oraz na podłożach stałych. Perspektywa zastosowania monomolekular-nych warstw LB i budowy układów wielowarstwowych z monowarstw nałożonych warstwa po warstwie wymusza potrzebę pomiaru ich rzeczywistej grubości, którą zazwyczaj określa się przez badanie stanu polaryzacji bądź intensywności spolaryzowanej liniowo fali świetlnej, odbitej od warstwy LB. Omówiono metody pomiarowe, których podstawę teoretyczną stanowi konwencjonalna teoria odbicia płaskiej fali elektromagnetycznej od ośrodka charakteryzującego się strukturą warstwową. Główne rozważania dotyczą metod stosowanych przez autora do wyznaczania zarówno grubości warstw, jak i ich parametrów optycznych, takich jak metoda różnicowego odbicia, zmodyfikowana metoda Laxhubera i metoda SPR. Końcową część monografii poświęcono zastosowaniu warstw LB w technice, a zwłaszcza w wielu dziedzinach elektroniki molekularnej. Opisano wiele urządzeń wykorzystujących zjawiska piezo- i piroelektryczne, nieliniowe zjawiska optyczne, efekt prostowniczy i polowy, zjawiska fotochromowe i elektrochromowe oraz elektroluminescencję. Omówiono zastosowanie warstw LB jako czynnych i biernych elementów czujników gazowych i chemicznych. Na tym tle przedstawiono udział autora w pracach związanych z badaniem i konstrukcją cienkowarstwowych czujników elektrochemicznych czujników SPR. Użycie pojedynczego czujnika gazowego, chemicznego lub biologicznego dostarcza w jednym pomiarze informacji w postaci jednej liczby, np. rezystancji lub spadku napięcia na rezystorze referencyjnym. Oznacza to, że w najlepszym razie możemy określić co najwyżej stężenie badanej substancji. Zastosowanie matrycy czujników pozwala rozróżnić wpływ kilku składników analitu i stanowi podstawę konstrukcji sieci neuronowej. Zaletą takiego rozwiązania jest powtarzalność wyników pomiaru oraz obiektywizm ekspertyz dokonywanych automatycznie przez sieć neuronową. Autor zbudował i przetestował miniaturową sieć neuronową, służącą do rozpoznawania składników mieszaniny alkohol etylowy-amoniak w powietrzu i pomiaru ich stężenia. Sieć stanowiły umieszczone w komorze mieszalnika gazów dwa konduktometryczne czujniki gazowe, w których warstwę LB składającą się z 3 lub 5 monowarstw mieszaniny 1:1 poli-(oktadecylo pirolu) i 4-f-butyloftalocyjaniny miedzi naniesiono na układ palczastych elektrod. Prąd płynący przez czujniki przy stałej różnicy potencjałów między elektrodami mierzono w funkcji stężenia gazu zarówno dla poszczególnych składników mieszaniny, jak i dla mieszanin gazów. Autor przedstawił swój udział w pracach nad zastosowaniem warstw Langmuira-Blodgett jako przykładów modelowych błon pseudobiologicznych. Techniką LB wytworzono podobne do biologicznych podwójne błony, otrzymane z klasycznych, długołańcuchowych cząsteczek kwasu eikozanowego oraz 22-trikozanowego z niewielką domieszką hek-satriakontanu. Warstwy podwójne były stabilne na powietrzu oraz hydrofilowe z obu stron i wytrzymywały do kilkudziesięciu zanurzeń i wynurzeń w trakcie pomiaru kąta zwilżania.
EN
Methods of fabricating and handling of Langmuir-Blodgett (LB) films as well as some perspectives of their application in the field of molecular electronics are presented. Within two introductory chapters the molecular and thermodynamic state of gas-liquid interface is described and methods of the surface tension measurements are also closed up. In particular, the Wilhelmy plate method is presented in details. Since LB films mostly consist amphiphilic molecules, particular attention is paid to the description of diverse molecules, those already used for LB films preparation as well as of novel ones, intentionally designed and functionalized to build up films of desired properties. The author gives some hints for quantum-chemical calculations concerning molecular engineering and shows his attainment on modification and manipulation of molecules to obtain LB films of expected properties. Structural changes and transitions occurring in LB films and problems related to film stability and real thicknesses of the films are widely described. Two methods of the thickness measurements were exploited: the modified Laxhuber method and the Surface Plasmon Resonance method. The latter one can be successfully used for determination of optical parameters of the film, particularly of environment depended parameters and therefore it can be used for construction of optical sensors. The author has also been involved in designing electrochemical gas and chemical sensors. He designed and built up a simple artificial neural network that can measure with a very high accuracy concentration of gases (ethanol and ammonia vapours) in mixtures. Finally, the author shows a possibility of building up some model, pseudo-biological membranes made of aliphatic acids mixed with long chain hydrocarbons.
Twórcy
autor
  • Wydział Chemii Politechniki Wrocławskiej
  • Instytut Chemii Fizycznej i Teoretycznej Politechniki Wrocławskiej, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27.
Bibliografia
  • Literatura 2.5
  • [1] LENNARD-JONES J. E., Wave functions of many-electron atoms, Proc. Cambr. Philos. Soc., 1931, 27, 469–480.
  • [2] Lord RAYLEIGH, On reflection from liquid surfaces in the neighbourhood of the polarizing angle, Phil. Mag., 1892, 33, 1–19.
  • [3] FöRSTER T., Intermolecular transfer of electronic energy, Z. Elektrochem., 1960, 64, 157–165 oraz odnośniki literatury tam zawartej.
  • [4] ADAMSON A. W., The Physical Chemistry of Surfaces, John Wiley, New York, 1990, (wyd. V), rozdz. 6.
  • [5] LONDON F., Theory and systematics of molecular forces, Z. Physik, 1930, 6, 245–79.
  • [6] EöTVÖS R., Ueber den Zusamenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molecular Volume, Ann. Phys. Chem. (Wied)., 1886, 27, 448–459.
  • [7] RAMSEY W., SHIELDS J., The molecular complexity of liquids, J. Chem. Soc., 1893, 1089–1109.
  • [8] von SZYSZKOWSKI B., Experimentelle Studien über Kapillare Eigenshaften der wässerigen Lösungen Fettsäuren, Z. phys. Chem., 1908, 64, 385–414.
  • [9] YOUNG T., Miscellaneous Works, Vol. 1, G. Peacock (Ed.), Murray, London, 1855, p. 418.
  • [10] WILHELMY L., Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers, Ann. Phys. Chem, 1863, 119, 177–217.
  • [11] JORDAN D. O., LANE J. E., A thermodynamic discussion of the use of a vertical plate to measure surface tension, Australian J. Chem., 1964, 17, 7–15.
  • [12] GAONKAR A. G., NEUMAN R. D., The effect of wettability of Wilhelmy plate and du Nouey ring on interfacial tension measurements solvent extraction systems, J. Colloid Interface Sci., 1984, 98, 112–119.
  • [13] ADAMSON A. W., ZEBIB A., Transition region between an infinite plane and an adsorbed film, J. Phys. Chem., 1980, 84, 2619–2623.
  • [14] GAINES Jr. G.L., Contact angle during monolayer deposition, J. Colloid Interface Sci., 1977, 59, 438–446.
  • Literatura 3.7
  • [1] GIBBS J. W., The collected works of J. W. Gibbs, Longmans, Green, New York 1931, Vol. 1.
  • [2] GUGGENHEIM E. A., The principle of corresponding states, J. Chem. Phys., 1945, 13, 253–261.
  • [3] LANGMUIR I., The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc., 1917, 39, 1848–1906.
  • [4] ROBERTS G. G. (red.), Langmuir-Blodgett Films, Plenum Press, New York, 1990.
  • [5] ADAMSON A. W., The Physical Chemistry of Surfaces, Wiley, New York, 1990, wyd. V, rozdz. 6.
  • [6] POCKELS A., Surface tension, Nature, 1891, 43, 437–439.
  • [7] Lord RAYLEIGH, Investigations in capillarity – The size of drops, The liberation of gas from supersaturated solutions,Colliding jets, The tension of contaminated water surfaces, Phil. Mag., 1899, 48, 321–337.
  • [8] ELLISON A. H., Surface pressure-area properties of organic monolayers on mercury, J. Phys. Chem., 1962, 66, 1867–1872.
  • [9] BARRAUD A., LELOUP J., LESIEUR P., Monolayers on glycerol subphase, Thin Solid Films, 1985, 133, 113–117; Fr. Patent 8, 303, 578, 1983.
  • [10] ADAM N. K., Physics and chemistry of surfaces, wyd. III, Oxford University Press, 1941.
  • [11] MYERS R. J., Collapse of unimolecular film of palmitic acid upon acid solution, J. Am. Chem. Soc., 1935, 572, 734–735.
  • [12] GAINES G. L. Jr., On the retention of solvent in monolayers of fatty acids spread on water surfaces, J. Phys. Chem., 1961, 65, 382–383.
  • [13] ROBERTS G.G., An applied science perspective of Langmuir-Blodgett films, Adv. Physics, 1985, 344, 75–512.
  • [14] ZOCHER H., STIEBEL F., Dunkelfeldmikroskopie dünnster Filme auf Flüssigkeitsoberfläschen, Z. phys. Chem., 1930, 14, 401–435.
  • [15] CRISP D. J., Surface films of polymers. I. Films of the fluid type, J. Colloid Sci., 1946, 1, 49–70.
  • [16] HUGHES A. H., RIDEAL E.K., Protein monolayers, Proc. Roy. Soc. (London), 1932, A137, 62–77.
  • [17] ALEXANDER A. E., Monolayers of porphyrins and related compounds, J. Chem Soc., 1937, 1813–1816.
  • [18] DYNAROWICZ-ŁĄTKA P., TAYLOR D., DHINDSA A. S., UNDERHILL A. E., Improvements of the spreading characteristics of monolayers of didodecyldimethylammonium-Ni(dmit)2, didodecyldimethylammonium- Ni(mnt)2 and N- octadecylpyridinium-Ni(dmit)2 at the air/water interface, Bull. of the Polish Academy of Sciences, Chemistry, 1997, 45, 459–466.
  • [19] ANTONOW G., Sur la tension superficielle a la limite de deux couches, J. Chim. Phys., 1907, 5, 372–385.
  • [20] REYNOLDS O., Works, Brit. Assoc. Rept., 1881, 1, 410.
  • [21] O’BRIEN R. N., FEHER A. I., LEJA J., Spreading of monolayers at the air-water interface. II. Spreading speeds for alcohols, acids, esters, sulfonates, amines quaternary ammonium ions, and some binary mixtures, J. Colloid. Interface Sci., 1976, 56, 474–482.
  • [22] GAINES G. L., Jr., Insoluble monolayers at liquid-gas interfaces, Interscience Publishers, New York, 1966.
  • [23] ULMAN A., An introduction to ultra thin organic film: from Langmuir-Blodgett to self assembly, Academic Press, Inc., Boston, 1991.
  • [24] ANDELMAN D., BROCHARD F., JOANNY J-F, Phase transitions in Langmuir monolayers of polar molecules, J. Chem. Phys., 1987, 86, 3673–3681.
  • [25] SHIMIZU M., YOSHIDA M., IIMURA K-i., SUZUKI N., KATO T., Area-temperature (A-T) isobars of monolayers of octadecylureas at the air/water interface, Colloids and Surfaces A: Phys. Eng Aspects, 1995, 102, 69–73.
  • [26] KANG Y. S., MAJDA M., Headgroup immersion depth and its effect on the lateral diffusion of amphiphiles at the air/water interface, J. Phys. Chem. B, 2000,104, 2082–2089.
  • [27] VOLLHARDT D., Phase transition in adsorption layers at the air-water interface, Adv. Colloid Interface Sci., 1999, 79, 19–57.
  • [28]GEHLERT U., VOLLHARDT D., The phase behaviour of an ether lipid monolayers compared with an ester lipid monolayer, Progr. Colloid polym Sci., 1994, 97, 302–306.
  • [29] XIA Q., YANG K-Z., Study on momnolayer behaviour of C60 using BAM and π-A isotherms, Mat. Sci. Eng. C, 1999, 10, 91–95.
  • [30] OHNUKI H., ISHIZAKI Y., SUZUKI M., DESBAT B., DELHAES P., GIFFARD M., IMAKUBO T., MABON G., IZUMI M., Metallic Langmuir and Langmuir-Blodgett films based on TTF derivatives and fatty acid, Material Science and Engineering C, 2002, 22, 227–232.
  • [31] GERSHFELD N. L., Physical chemistry of lipid films at fluid interfaces, Ann. Rev. Phys. Chem., 1976, 27, 349–368
  • [32] KIPLING J. J.,. NORRIS A.D, Molecular cross sections in films of fatty acids on water, J. Colloid Sci., 1953, 8, 547–551.
  • [33] LUTY T., SWANSON D. R., ECKHARDT C. J., Langmuir monolayers as disordered solids: Strain-tiltbackbone for the swiveling transitions, J. Chem. Phys., 1999, 110, 2606–2611.
  • [34] LEVEILLER F., JACQUEMAIN D., LEISERROWITZ L., KJAER K., ALS-NIELSEN J., Toward a determination at near atomic resolution of two-dimensional crystal structures of amphiphilic molecules on the water surface. A study based on grazing incidence synchrotron X-ray diffraction and lattice energy calculations, J. Phys. Chem., 1992, 96, 10380–10389.
  • [35] GARFIAS F. J., Solid monolayers at the water/gas interface: The polyshell network, J. Phys. Chem., 1980, 84, 2297–2300.
  • [36] MILER S. T., JOANNY J. F., PINCUS P., Buckling of Langmuir monolayers, Europhys. Lett., 1989, 9, 495–500.
  • [37] PUGGELLI M., GABRIELLI G., CAMINATI G., Polypeptyde mixed monolayers: collapse mechanism, Colloid Polym. Sci., 1989, 267, 65–70.
  • Literatura 4.5
  • [1] LANGMUIR I., The mechanism of the surface phenomena of flotation, Trans. Faraday Soc., 1920, 15, 62–74.
  • [2] BLODGETT K. B., Monomolecular films of fatty acids on glass, J. Am. Chem. Soc., 1934, 56, 495.
  • [3] BLODGETT K. B., Films build by depositing successive monomolecular layers on a solid surface, J. Am. Chem. Soc., 1935, 57, 1007–1022.
  • [4] BLODGETT K. B., I. LANGMUIR, Build-up films of barium stearate and their optical properties, Phys. Rev., 1937, 51, 964–982.
  • [5] GAINES, Jr. G. L., From monolayer to multilayer: some unanswered questions, Thin Solid Films, 1980, 68, 1–5.
  • [6] SCHULMAN J. H., WATERHOUSE R. B., SPINK J. A., Adhesion of amphipatic molecules to solid surfaces, Kolloid Z., 1956, 146, 77–95.
  • [7] LANGMUIR I., SCHAEFER V. J., Activities of ureaze and pepsin monolayers, J. Am. Chem. Soc., 1938, 60, 1351–1360.
  • [8] GAINES Jr. G. L., Insoluble monolayers at liquid-gas interfaces, Interscience Publishers, New York, 1966.
  • [9] FUKUDA K., NAKAHARA H., KATO T., Monolayers and multilayers of antraquinone derivatives containing long alkyl chains, J. Colloid Interface Sci., 1976, 54, 430–438.
  • [10] KOSSI C. N., LEBLANC R. M., Rhodopsin in a new model membrane, J. Colloid Interface Sci., 1981, 80, 426–436.
  • [11] REICHERT W. M., BRUCKNER C. J., JOSEPH J., Langmuir–Blodgett films and black lipid membranes in biospheric surface-selective sensors, Thin Solid Films, 1987, 152, 345–376.
  • [12] DAY D., LANDO J. B., Morphlogy of crystalline diacetylene monolayers polymerised at the gaswater interface, Macromolecules, 1980, 13, 1478–1483.
  • [13] SUCKER C., Eine Neuartige Filmwaage zur Automatischen Messung des Filmdruckes F und des Molekularen Flachenbedarfs A Gespreiteter Monomolekularer Filme, Kolloid Z., 1963, 190, 146–153.
  • [14] GRUNFELD F., A modular multifunctional Langmuir–Blodgett Trough, Rev. Sci. Instrum., 1993, 64, 548–555.
  • [15] SOMASUNDARAN P., DANITZ M., MYSELS K. J., A new apparatus for measurements of dynamic interfacial properties, J. Colloid Interface Sci., 1974, 48, 410–416.
  • [16] MILLER L. S., HOOKES D. E., TRAVERS P. J., MURPHY A. P., A new type of Langmuir–Blodgett trough, J. Phys. E: Sci. Instrum., 1988, 21, 163–167.
  • [17] TABE Y., SUGI M., IKEGAMI K., KURODA S., SAITO K., SAITO M., Theory of flow orientation effects in Langmuir–Blodgett films: Examination of the local thermal equilibrium approximation, Thin Solid Films, 1992, 210/211, 32–35.
  • [18] KATO T., TATEHANA A., SUZUKI N., IIMURA K., Development of a precisely temperatureprogrammable Langmuir trogh for measuring properties of insoluble monolayers at the water surface as functions of temperature, Jpn. J. Appl. Phys., 1995, 34, L911–L913.
  • [19] KASUGA T., KUMEHARA H., WATANABE T., MIYATA S., Design of a new Langmuir–Blodgett trough with the zone-heating mechanism above the water surface, Thin Solid Films, 1989, 178, 183–189.
  • [20] MINGINS J., OWENS N. F., Experimental considerations in insoluble spread monolayers, Thin Solid Films, 1987, 152, 9–28.
  • [21] LANGMUIR I., SCHAEFER V. J., The effect of dissolved salts on insoluble monolayers, J. Am. Chem. Soc., 1937, 59, 2400–2414.
  • [22] MORRISON P. W. (red.), Environmental Control in electronic manufacturing, Van Nostrand Reinhold, New York, 1973.
  • [23] SCHENKEL J. H., KITCHENER J. A., Contamination of surfaces by conductivity water from ionexchange resins, Nature, 1958, 182, 131.
  • [24] GAINES G. L., Observations on resin deionized water as a substrate for monolayer studies, J. Chem. Phys., 1959, 63, 1322–1324.
  • [25] LANGMUIR I., Overturning and anchoring of monolayers, Science, 1938, 87, 493–500.
  • [26] CHARLES M., Optimization of multilayer soap crystals for ultrasoft X-ray diffraction, J. Appl. Phys., 1971, 42, 3329–3356.
  • [27] GREEN J. P., PHILLIPS M. C., SHIPLEY G. G., Structural investigations of lipids, polypeptide and protein multilayers, Biochim. Biophys. Acta, 1973, 330, 243–253.
  • [28] POMERANTZ M., DACOL F. H., SEGMÜLLER A., Preparation of literally two-dimensional magnets, Phys. Rev. Lett., 1978, 40, 246–249.
  • [29] JOHNSTON D. S., COPPARD E., PARERA G. V., CHAPMAN D., Langmuir film balance study of interactions between carbohydrates and phospholipid monolayers, Biochemistry, 1984, 23, 6912–6919.
  • [30] HARKINSW. D., ALEXANDER A. E., Physical methods of organic chemistry, Wiley, New York, 1959.
  • [31] GÖBEL H. D., Interdependence between crystallization and polymerization in diacetylene monolayers, Thin Sold Films, 1988, 159, 63–72.
  • [32] OYANAGI H., YONEYAMA N., IKEGAMI K., SUGI M., KURODA S., ISHIGURO T., MATSUSHITA T., Langmuir–Blodgett monolayers studied by surface sensitive X-ray absorption fine structure, Thin Solid Films, 1988, 159, 435–442.
  • [33] PETERSON I. R., Langmuir–Blodgett Films, Chapter 3 [w:] G. J.Ashwell (red.), Molecular Electronics, Research Studies Press LTD, Taunton, 1992.
  • [34] STENHAGEN E., Monolayers of compounds with branched hydrocarbon chains. I. Di-substituted acetic acids, Trans. Faraday Soc., 1940, 36, 597–606.
  • [35] GAINES Jr. G. L., The thermodynamic equation of state for insoluble monolayers. I. Uncharged films, J. Chem. Phys., 1978, 69, 924–930.
  • [36] BARET J.F., HASMONAY H., FIRPO J. L., DUPIN J. L., DUPEYRAD M., The different type of isotherm exibited by insoluble fatty acid monolayers. A theoretical interpretations of phase transitions in the condensed state, Chemistry & Physics Lipids, 1982, 30, 177–187.
  • [37] BUHAENKO M. R., GOODWIN J. W., RICHARDSON R.M., DANIEL M. F., The influence of shear viscosity of spread monolayers on the Langmuir–Blodgett process, Thin Solid Films, 1985, 134, 217–226.
  • [38] MACNEILL B. A., SIMMONS G. W., FERGUSON G. S., The sorption of water vapor by multilayered composite films measured using infrared spectroscopy, Mat. Res. Bull., 1999, 34, 455–461.
  • [39] PANG S., HUANG J., LIANG Y., FTIR studies on LB films of amphiphile with Schiff base as headgroup and its copper complex, Spectrosc. Lett., 2000, 33, 301–321.
  • [40] HONIG E.P., Molecular constitution of X- and Y-type Langmuir–Blodgett films, J. Colloid Interface Sci., 1973, 43, 66–72.
  • [41] HASMONAY H., VINCENT M., DUPEYARD M., Composition and transfer mechanism of Langmuir– Blodgett multilayers of stearates, Thin Solid Films, 1980, 68, 21–31.
  • [42] GABRIELLI G., CAMINATI G., PUGGELLI M., Interactions and reactions of monolayers and Langmuir– Blodgett multilayers with compounds in the bulk phase, Adv. Colloid Interface Sci., 2000, 87, 75–111.
  • [43] BARRAUD A., ROSILIO C., RUAUDEL-TEIXIER A., Reactivity of organic molecules in monolayers, Thin Solid Films, 1980, 68, 7–12.
  • [44] LÖSCHE M., RABE J., FISCHER A., RUCHA B. U., KNOLL W., MÖHWALD H., Microscopically observed preparation of Langmuir–Blodgett films, Thin Solid Films, 1984, 117, 269–280.
  • [45] LÖSCHE M., HELM C., MATTES H. D., MÖHWALD H., Formation of Langmuir–Blodgett films via electrostatic control of the lipid/water interface, Thin Solid Films, 1985, 133, 51–64.
  • [46] STEPHENS J. F., Mechanisms of formation of multilayers by the Langmuir–Blodgett technique, J. Colloid Interface Sci., 1972, 38, 557–562.
  • [47] CLINT J.H., WALKER T., Interaction energies between layers of alkyl and partially fluorinated alkyl chains in Langmuir–Blodget multilayers, J. Colloid Interface Sci., 1974, 47, 172–185.
  • [48] PETERSON I.R., RUSSEL G. J., Deposition mechanisms in Langmuir–Blodgett films, Br. Polym. J., 1985, 17, 364–367.
  • [49] LANGMUIR I., SCHAEFER V. K., SOBOTKA H., Multilayers of sterols and adsorption of digitonin by deposited monolayers, J. Am. Chem Soc., 1937, 59, 1751–1759.
  • [50] KURI T., OISHI Y., KAJIYAMA T., Exact evaluation of transfer ratio of monolayer based on areacreep measurements, Langmuir, 1995, 11, 366–368.
  • [51] HONIG E. P., HENGST J. H., DEN ENGESEN D., Langmuir–Blodgett deposition ratios, J. Colloid Interface Sci., 1973, 45, 92–102.
  • [52] HOLLEY C., BERNSTEIN S., Grating space of barium-copper-stearate films, Phys. Rev. 1937, 52, 525.
  • [53] BERNSTEIN S., Comparison of X-ray photographs take with X and Y build-up films, J. Am. Chem. Soc., 1938, 60, 1511.
  • [54] EHLERT R. C., Overturning of monolayers, J. Colloid Sci., 1965, 20, 387–390.
  • [55] STENHAGEN E., Build-up films of esters, Trans. Faraday Soc., 1938, 34, 1328–1337.
  • [56] FUKUDA K., SHIOZAWA T., Conditions for formation and structural characterization of X-type and Y-type multilayers of long-chain esters, Thin Solid Films, 1980, 68, 55–66.
  • [57] PUTERMAN M., FORT T., LANDO J. B., The polymerization and structure of mixed monolayers of ethyl and vinyl stearate, J. Colloid Interface Sci., 1974, 47, 705–718.
  • [58] GAINES Jr. G. L., Contact angles during monolayer deposition, J. Colloid Interface Sci., 1977, 59, 438–446.
  • [59] NEUMAN R. D., Molecular reorientation in monolayers at the paraffin–water interface, J. Colloid Interface Sci., 1978, 63, 106–112.
  • [60] BUHAENKO M. R., RICHARDSON R. M., Measurement of the forces of emersion and immersion and contact angles during Langmuir–Blodgett deposition, Thin Solid Films, 1988, 159, 231–238.
  • [61] NECHEV G., HIBINO M., CHATTA I., Point defects in Langmuir–Blodgett films of Cd arachidate, Colloids and Surfaces A: Physicochemical Eng. Aspects, 2000, 166, 1–6.
  • [62] VANDERVYVER M., BARRAUD A., Methods of characterization for Langmuir–Blodgett films, J. Mol. Electronics, 1988, 4, 207–221.
  • [63] PETERSON I. R., VEALE G., MONTGOMERY C. M., The preparation of oleophilic surfaces for Langmuir– Blodgett deposition, J. Colloid Interface Sci., 1986, 109, 527–530.
  • [64] SAINT PIERRE M., DUPEYARD M., Measurement and meaning of the transfer process energy in the building up of Langmuir–Blodgett multilayers, Thin Solid Films, 1983, 99, 205–213.
  • [65] ROBERTS G. G., MCGINNITY M., BARLOW W. A., VINCETT P. S., Electroluminescence, photoluminescence and electroabsorption of a lightly substituted anthracane Langmuir film, Solid State Commun., 1979, 32, 683–686.
  • [66] TIEKE B., LIESER G., WEISS K., Parameters influencing the polymerization and structure of longchain diyonic acids in multilayers, Thin Solid Films, 1983, 99, 95–102.
  • [67] SWORAKOWSKI J., CHYLA A., BIEŃKOWSKI M., Formation and electrical and optical properties of multi-component Langmuir–Blodgett films containing poly(3-n-alkylthiophenes), [w:] F. Kajzar, V. M. Agranovich and C.Y.-C. Lee (red.), Photoactive Organic Materials. Science and Applications, Kluwer, Dordrecht, 1996.
  • [68] LEWANDOWSKA A., Budowa czujnika gazów toksycznych na bazie polimerów przewodników przewodzących . Praca dyplomowa, Politechnika Wrocławska , wydz. Chemiczny, 2000 (promotor A. Chyla)
  • [69] I. R. PETERSON, G. J. RUSSEL, An electron diffraction study of ω-tricosenoic acid Langmuir Blodgett films, Phil. Mag. A, 1984, 49, 463–473.
  • [70] TREDGOLD R. H., SMITH G. W., Surface potential studies on Langmuir–Blodgett multilayers and adsorbed monolayers, Thin Solid Films, 1983, 99, 215–220.
  • [71] SUGI M., SAITO M., FUKUI T., IIZIMA S., Effect of dye concentration in Langmuir multilayer photoconductors, Thin Solid Films, 1983, 99, 17–20.
  • [72] SCHOELER U., TEWS K. H., KUHN H., Potential model of dye molecule from measurements of the photocurrent in monolayer assemblies, J. Chem. Phys., 1974, 61, 5009–5016.
  • [73] TREDGOLD R. H., JONES S. D., EVANS S.D., WILLIAMS P. I., Aluminium oxide as a substrate for the deposition of Langmuir–Blodgett films, J. Mol. Electr., 1986, 2, 147–149.
  • [74] GIRLING I. R., MILVERTON D. R. J., A method for the preparation of an alternating multilayer film, Thin Solid Films, 1984, 115, 85–88.
  • [75] HANDY R. M., SCALLA L. C., Electrical and spectral properties of Langmuir films, J. Eloctrochem. Soc., 1966, 113, 109–116.
  • [76] ROBERTS R. W., GAINES G. L. Jr., Stability of fatty acids in vacuum, Trans. 9th Natl. Vac. Symposium, Los Angeles, 1962, 515–518.
  • [77] SPINK J. A., The transfer ratio of Langmuir–Blodgett monolayers to various solids, J. Colloid Interface Sci., 1967, 23, 9–26.
  • [78] SMITH T., The hydrophilic nature of a clean gold surface, J. Colloid Interface Sci., 1980, 75, 51–55.
  • [79] G. L. GAINES, Jr., On the water wettability of gold, J. Colloid Interface Sci., 79 (1981) 295.
  • [80] BIEŃKOWSKI M., Warstwy Langmuira–Blodgett badanie metoda rezonansu plazmonów powierzchniowych Praca doktorska Politechnika Wrocławska 1998
  • [81] VINCETT P. S., ROBERTS G. G., Electrical and photoelectrical transport properties of Langmuir–Blodgett films and a discussion of possible device application, Thin Solid Films, 1980, 68, 135–171.
  • [82] PINTCHOVSKI F., PRICW J. B., TOBIN P. J., PEAVEY J., KOBOLD K., Thermal characteristics of the H2SO4–H2O2 silicon wafer cleaning solution, J. Electrochem. Soc., 1979, 126,1428–1430.
  • [83] WASSERMAN S. R., TAI T. Yu-, WHITESIDE G. M., Structure and reactivity of alkylsilane monolayers formed by reaction of alkyltrichlorsilane on silicon substrates, Harvard Univ., Reports, 1989 TR-17.
  • [84] CARIM A. H., DOVEK M. M., QUATE C. F., SINCLAIR R., VORST C., High-resolution electron microscopy and scaning tuneling microscop of native oxides on silicon, Science, 1987, 237, 630–633.
  • [85] LLOYD J. P., PETTY M. C., ROBERTS G. G., LECOMBER P. G., SPEAR W. E., Langmuir–Blodgett films in amorphous silicon MIS structures, Thin Solid Films, 1982, 8, 395–399.
  • [86] CLARK D. T., FOK T., ROBERTS G. G., SYKES R. W., An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for Langmuir film deposition, Thin Solid Films, 1980, 70, 261–283.
  • [87] ASPENS D. E., STUDNA A. A., Chemical etching and cleaning procedures for Si, Ge and some III–V compound semiconductors, Appl. Phys. Lett., 1981, 39, 316–318.
  • [88] ROBERTS G. G. (red.), Langmuir–Blodgett Films, Plenum Press, New York, 1990.
  • [89] BETTS J. J., PETHICA B. A., The ionization characteristics of monolayers of weak acids and bases, Trans. Faraday Soc., 1956, 52, 1581–1589.
  • [90] JOOS P., Effect of the pH on the collapse pressure of faty acid monolayers. Evaluation of the surface dissociation constant, Bull. Soc. Chim. Belg., 1971, 80, 277–281.
  • [91] KUHN H., MÖBIUS D., Systems of monomolecular layers – assembling and physicochemical behaviour, Angew. Chem. Int. Ed. Engl., 1971, 10, 620–637.
  • [92] ALEXANDER A. E., Build-up films of unsubstituted and sustituted long-chain compounds, J. Chem. Soc., 1939, 777–781.
  • [93] BARRAUD A., ROSILIO C., RUAUDEL-TEIXIER A., Solid state electron-induced polymerisation of ω-tricosenoic acid multilayers, J. Colloid Interface Sci., 1977, 62, 509–523.
  • [94] BERNETT M., ZISMAN W. A., The behaviour of monolayers of progressively fluorinated fatty acids adsorbed on water, J. Phys. Chem., 1963 67, 1534–1540.
  • [95] NAKAHAMA H., MIYATA S., WANG T. T., TASAKA S., Preparation of multilayer Langmuir–Blodgett films of a short-chain perfluorinated carboxyloc acids, Thin Solid Films, 1986, 141, 165–169.
  • [96] ADAM N. K., DYER J. W. W., The molecular structure of thin films, Proc. R. Soc. London, Ser. A. 1924, 106, 694–709.
  • [97] SCHURR M., SEIDL M., BRUGGER A., VOIT H., Copper-oxide thin films from Langmuir–Blodgett films, Thin Solid Films, 342 (1999) 266–269.
  • [98] BRUGGER A., SCHOPPMANN Ch., SCHURR M., SEIDL M., SIPOS G., HAHN C. Y., HASSMANN J., WALDMANN O., VOIT H., Ultrathin Fe-oxide layers made from Langmuir–Blodgett films, Thin Solid Films, 1999, 338, 231–242.
  • [99] GAINES G. L., Jr., Langmuir–Blodgett films of long chain amines, Nature, 1982, 298, 544–545.
  • [100] LEWIS T. J., TAYLOR D. M., LLEWELLYN J. P., SALVANGO S., STIRLING C. J. M., Langmuir films composed of sulfur-containing molecules,Thin Solid Films, 1985, 133, 243–252.
  • [101] MINGINS J., PETHICA B. A., Properties of ionised monolayers. Part 5. Surface potentials and pressures of insoluble monolayers os sodium octadecyl sulfate, Trans. Faraday Soc., 1963, 59, 1892–1905.
  • [102] SEIP T. C., TALHAM D. R., Organic/inorganic Langmuir–Blodgett films based on known layered solids: Characterization and reaction of cobalt octadecylphosphonate, Mat. Res. Bull., 1999, 34, 437–445.
  • [103] RAY K., MISRA T. N., Energy transfer between carbazole and anthracene moieties organised in Langmuir–Blodgett films, J. Phys. Chem. Solids, 1999, 60, 401–405.
  • [104] NASELLI C., RABE J.P., RABOLT J.F., SWALEN J. D., Thermally induced order-disorder transitions in Langmuir-Bldgett films, Thin Solid Films, 1985 104, 173–178.
  • [105] FOSTER R., Organic charge-transfer complexes, Academic Press, New York, 1969.
  • [106] F. H. C. STEWART, Unimolecular films from certain anthracene derivatives, Aus. J. Chem., 1961, 14, 57–63.
  • [107] VINCENT P. S., BARLOW W. A, Highly organized aromatic molecular systems using Langmuir –Blodgett films : Structure, optical properties and probable epitaxy of anthracene-derivative multilayers, Thin Solid Films, 1980, 71, 305–326.
  • [108] PETERSON I. R., RUSSEL G. J., NEAL D. B., PETTY M. C., ROBERTS G. G., GINNAI T., HANN R. A., An electron diffraction study of LB films from a lightly substituted anthracene derivative, Philos. Mag., 1986, B54, 71–79.
  • [109] IBRAYEV N. Kh., LATONIN V. A., Dynamics of triplet excitations in Langmuir–Blodgett films of aromatic molecules, J. Lumin., 2000, 87–89, 760–763.
  • [110] ZYLBERAJCH C., RUAUDEL-TEIXIER A., BARROUD A., 2D monomolecular inorganic semiconductors inserted in a Langmuir–Blodgett matrix, Synthetic Metals, 1988, 27, B609–B614.
  • [111] LITTLE W. A., Possibility of synthesizing an organic superconductor, Phys. Rev., 1964, 134, A1416-A1424.
  • [112] PAPAVASSILIOU G.C., MOUSDIS G. A., ZAMBOUNIS J. S., TERZIS A., HOUNTAS A., HILTI B., MAYER C. W., PFEIFFER J., Low temperature measurements of the electrical conductivities of some charge transfer salts with the assymetric donors MDT–TTF, EDT–TTF anfd EDT–DSDTF, Synth. Met., 1988, 27, B379 B383.
  • [113] BEDNORZ J. G., MÜLLER K. A., Possible high Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. 1986, B 64, 189–193.
  • [114] MORAND J. P., LAPOUYADE R., DELHAES P., VANDEVYVER M., RICHARD J., BARRAUD A., A novel class of organic conductors based on Langmuir–Blodgett technique: The ethylenedithiodiocta decyl thiotetrathiafulvalene tetrafluorotetracyanoquinodimethane doped with iodine, Synth. Met., 1988, 27, B569–B574.
  • [115] DHINDSA A. S., BRYCE M. R., LLOYD J. P., PETTY M. C., Electroactive Langmuir–Blodgett films of hexadekanoyl–TTF, Synth. Met., 1988, 27, B563–B568.
  • [116] TAKAHASHI T., SAKAI K., YUMOTO T., AKUTGAWA T., HASEGAWA T., NAKAMURA T., Structure and electronic properties of bis[bis(methylthio) tetrafulvalenedithiolate]-gold (III) Langmuir–Blodgett films, Thin Solid Films, 2001, 393, 7–11.
  • [117] IKEGAMI K., KURODA S-I., SAITO K., SAITO M., SUGI M., NAKAMURA T., MATSUMOTO M., KAWABATA Y., SAITO G., Anomalous low-temperature behaviour of Langmuir–Blodgett films of (TMTTF)3 – (tetradecylTCNQ)2, Synth. Met., 1988, 27, B587–B592.
  • [118] JAISWAL A., SINGH R. A., Semiconducting mixed Langmuir–Blodgett films of neew charge-transfer complex II: N-octadecylbenzidine–TCNQ, Thin Solid Films, 2001, 394, 159–163.
  • [119]. NAKAMURA T., TAKEI F., MATSUMOTO M., TANAKA M., SEKIGUCHI T., MANDA E., KAWABATA Y., The conductivity-area isotherm of binary ChargeTransfer complex TMTTF–otadecyl–TCNQ, on a glycerin subphase, Synth. Met., 1987, 19, 681–686.
  • [120] KIM T. W., BYUN D. -H., LEE H. -S., KANG D. -Y., Electrical properties of C22–quinolinium (TCNQ) and polyamic acid alkylamine salt Langmuir–Blodgett films, Thin Solid Films, 1998, 331, 8–14.
  • [121] RUAUDEL-TEIXIER A., VANDEVYVER M., BARRAUD A., Novel conducting Langmuir–Blodgett Films, Mol. Cryst. Liq. Cryst., 1985, 120, 319–322.
  • [122] KOWALSKA K., Budowa czujnika gazów toksycznych w oparciu o kompleks z przeniesieniem ładunku. Praca dyplomowa Politechnika Wrocławska , Wydz. Chemiczny, 2000 (promotor: A. Chyla).
  • [123] CHYLA A., SOŁODUCHO J., KOWALSKA K., Gas sensing properties of the CT-complex of fluorine derivative with TCNQ, K. A. Wilk (red.), Surfactants and dispersed systems in theory and practice, Polanica Zdr., 2003, 311–316.
  • [124] VALENTY S. J., Monolayer films of surfactant derivatives of methylene blue, J. Colloid Interface Sci., 1979, 68, 486–491.
  • [125] GILES C. H., Dyeing in two dimensions. A review of the use of the monolayer method of the study of dye–fiber reactions, J. Soc. Dyers Colour, 1978, 94, 4–12.
  • [126] VITUKHNOVSKY A. G., LOBANOV A. N., PIMENOV A., YONEZAWA Y., KOMETANI N., ASAMI K., YANO J., Absorption spectra simulation of amalgamation-type cyanine dye aggregates in LB films, J. Lumin., 2000, 87–89, 260–262.
  • [127] XU X. B., MAJIMA Y., IWAMOTO M., Molecular switching in phospholipid–azobenzene mixed monolayers by photoisomerization, Thin Solid Films, 1998, 331, 239–247.
  • [128] ASHWELL G. J., WHITTAM A., J., Quadratic enhancement of the second-harmonic intensity from alternate-layer Langmuir–Blodgett films of an optically nonlinear dye and poly(t-butyl metacrylate, Mol. Cryst. Liq. Cryst., 1999, 337, 1–6.
  • [129] KATO K., ABE M., OBATA K., KANEKO F., SHINBO K., KOBAYASHI, S., Structures and electrical properties of arachidic acid Langmuir–Blodgett films with cyanine dyes prepared by applying bias voltages, Thin Solid Films, 1998, 331, 32–38.
  • [130] ASHWELL G. J., ZHOU D., HUANG C.-H, Z-type Langmuir–Blodgett films of a three-component optically nonlinear dye, Colloids and SurfacesA:Phys. Eng. Aspects, 1999, 155, 47–50.
  • [131] TACHIBANA H., YAMANAKA Y., SAKAI H., ABE M., Matsumoto M., J-aggregate formation of amphiphilic merocyanie in Langmuir–Blodgett films, J. Lumin., 2000, 87–89, 800–802.
  • [132] ASHWELL G. J., SKJONNEMAND K., ROBERTS M. P. S., ALLEN D. W., LI X., SWORAKOWSKI J., CHYLA A., BIENKOWSKI M., Surface plasmon resonance and nonlinear optical studies of Langmuir–Blodgett films of a betaine dye, Colloids and Surfaces A: Phys. Eng. Aspects, 1999, 155 43–46.
  • [133] ASHWELL G. J., HARGREAVES R. C., BALDWIN C. E., BAHRA G. S., BROWN C. R., Improved secondharmonic generation from Langmuir–Blodgett films of hemicyanine dyes, Nature, 1992, 357, 4 June, Letters to Nature.
  • [134] DECHER G., KLINKHAMMER F., PETERSON I. R., STEITZ R., Structural investigations of Langmuir –Blodgett films of 2-docosylamino-5-nitropyridine, a new type of non-centrosymmetric multilayer for use in non-linear optics, Thin Solid Films, 1989, 178, 445–451.
  • [135] ASHWELL G. J., Langmuir–Blodgett films: molecular engineering of non-centrosymmetric structures of second-order nonlinear optical applications, J. Mater. Chem., 1999, 9, 1991–2003.
  • [136]. KAURANEN M., VERBIEST T., BOUTTON C., TEERENSTRA M. N., CLAYS K., SCHOUTEN A. J., NOLTE R. J. M., PERSOONS A., Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores, Science, 1995, 270, 966–969.
  • [137] ASHWELL G. J., JACKSON P. D., JEFFERIES G., GENTLE I. R., KENNARD C. H. L., Controlling thestructure of transparent Langmuir–Blodgettfilms for nonlinear optical applications, J. Mater. Chem., 1996, 6, 137–141.
  • [138] ASHWELL G. J., DYER A. N., LOCHUN D., Orientation of optically nonlinear chromophores at the air-water interface, Mol. Cryst. Liq Cryst., 1999, 337, 421–424.
  • [139] KARTHAUS O., UEDA K., YAMAGISHI A., SHIMOMURA M., Stilbene-containing amphiphiles in supramolecular assemblies, Journal of Photochemistry and Photobiology A: Chemistry, 1995, 92, 117–120.
  • [140] BAIGENT D. R., GREENHAM N. C., GRÜNER J., MARKS R. N., FRIEND R. H., MORATTI S. C., HOLMES A. B., Light-emitting diodes fabricated with conjugated polymers – recent progress, Synth. Met., 1994, 67, 3–10.
  • [141] CHYLA A., BIEŃKOWSKI M., SWORAKOWSKI J., WILK K. A., Photoactive amphiphilic 4-(4’-dodecylphenylazo) benzoic acid: A comparison of photochromic activity of molecules in Langmuir–Blodgett Films and insolutions, NATO Advanced Research Workshop: Electrical and Related Properties of Organic Solids, 1996, June 18–22, Polanica Zdr., Poland, poster 77.
  • [142] KUCHARSKI S., JANIK R., MOTSCHMANN H., RADÜGE Ch., Transcis isomerisation of azobenzene amphiphiles containing a sulfonyl group, New J. Chem. 1999, 23, 765–771.
  • [143] MATSUMOTO M., TERRETTAZ S., TACHIBANA H., Photo-induced structural changes of azobenzene Langmuir–Blodgett films, Advances in Colloid and Interface Sci., 2000, 87, 147–164.
  • [144] DOS SANTOS D. S., Jr., MENDONCA C. R., BALOGH D. T., DHANABALAN A., CAVALLI A., MISOGUTI L., GIACOMETTI J. A., ZILIO S. C., OLIVEIRA O. N., Jr., Chromophore aggregation hampers photoisomerization in Langmuir–Blodgett films of stearoyl ester of Disperse Red-13(DR13St), Chem. Phys. Letters., 2000, 317, 1–5.
  • [145] KELKER H., HATZ R., Handbook of Liquid Crystals, Verlag Chemie, Weinheim, 1980.
  • [146] BRADOSOVA M., TREDGOLD R. H., Ultra-thin films of smectic liquid crystals on solid substrates, Mol. Cryst. Liq. Cryst., 2001, 355, 289–303.
  • [147] DOMAGALSKA B.W., WILK K. A., CHYLA A., Spectroscopic, electrochemical and self-assembling properties of all-E-ω- (heksylooxyfenyl)heptadeka-2,4,6,8,10,12,14,16-oktaenal, Referat prezentowany na XLIV Zjeździe PTCHEM Katowice 2001
  • [148] VICKERS A. J., TREDGOLD R. H., KHOSHDEL E., HODGE P., GIRLING I., An investigation of liquid crystal side chain polymeric Langmuir–Blodgett films as optical waveguides, Thin Solid Films, 1985, 134, 43–48.
  • [149] OHMORI S., ITO S., YAMAMOTO M., Layered structure of Langmuir–Blodgett films measured by inerlayer energy transfer, Macromolecules, 1991, 24, 2377–2384.
  • [150] TREDGOLD R. H., WINTER C. S., Langmuir–Blodgett monolayers of preformed polymers, J. Phys. D, 1982, 15, L55–58.
  • [151] NAEGELE D., RINGSDORF H., Polyreactions in ordered systems: polymerization of octadecyl methacrylate in monolayers at the gas water interface, J. Polym. Sci.: Polymer chemistry Edn., 1977, 15, 2821–2834.
  • [152] COLLINS S. J., MAHESH G. N., RADHAKRISHNAN G., DHATHATHREYAN A., Effect of spreading solvents on the monolayer of poly(methyl methacrylate), Colloids Surfaces A; Physicochem. Eng. Aspects, 1995, 95, 293–297.
  • [153] GABRIELLI G., BAGLIONI P., FERRONI E., Bi- and tri-dimensional solutions of poly(vinyl acetate), Colloid Polym. Sci., 1979, 257, 121–127.
  • [154] FERONI E., GABRIELLI G., PUGELLI M., Mixed poly(vinylidene fluoride) –poly(vinyl fluoride) monolayers, Chim. Ind. (Milan), 1967, 42, 147–150.
  • [155] GAINES G. L. Jr., Monolayers of dimethyl-siloxane-containing block copolimers, Adv. Chem. Ser., 1975, 144, 338–346.
  • [156] WINTER C. S., TREDGOLD R. H., VICKERS A. J., KHOSHDEL E., HODGE P., GIRLING I., Langmuir–Blodgett films from preformrd polymers: derivativesof otadec-1-ene-maleic anhydride copolymers, Thin Solid Films, 134 (1985) 49–55.
  • [157] MIYASHITA T., MATSUDA M., Van der AUWERAER M., De SCHRYVER F. C., Polymer Langmuir– Blodgett films containing photofunctional groups. 4. A photophysical study of copolymers containing a carbazole chromophore in a monolayer and Langmuir–Blodgett multilayers, Macromolecules, 1994, 27, 513–517.
  • [158] I. WATANABE, K. HONG, M. F. RUBNER, Langmuir–Blodgett manipulation of poly(3-alkylthiophenes), Langmuir, 1990, 6, 1164–1172.
  • [159] BARTKIEWICZ S., CHYLA A., SWORAKOWSKI J., JANIK R., KUCHARSKI S., Deposition, electrical conductivity and response to gases of two-component Langmuir–Blodgett films containing preformed poly(3-n-alkylthipohenes), Polish J. Chem., 1994, 68, 1387–1393.
  • [160] SWORAKOWSKI J., B,(_.2:6., M., CHYLA A., KUCHARSKI S., Multicomponent LB films containing poly(3-n-alkylthipohenes), Macromol. Symp., 1996, 104, 115–126.
  • [161] KUCHARSKI S., JANIK R., BIEŃKOWSKI M., CHYLA A., SWORAKOWSKI J., Formation and deposition of Langmuir Films of binary and ternary systems, Polish J. Chem., 1995, 69, 447–460.
  • [162] CHYLA A., KUCHARSKI S., JANIK R., SWORAKOWSKI J., BIEŃKOWSKI M., Two-component Langmuir and Langmuir–Blodgett films containing monomeric and polymeric alkylheteroaromates: surface plasmon resonance and electrical conductivity, Thin Solid Films, 1996, 284–285, 496–499.
  • [163] FARISS G., LANDO J., RICKET S., Eletron beam resistsproduced from monomer-polymer Langmuir –Blodgett films, Thin Solid Films, 1983, 99, 305–315.
  • [164] SATO M., TANAKA S., KAERIYAMA K., Soluble conducting polythiopenes, J. Chem. Soc. Chem. Commun., 1986, 873–874, com. 235.
  • [165] LOGSDON P. B., PFLEGER J., PRASAD P. N., Conductive and optically non-linear polymeric Langmuir– Blodgett films of poly(3-dodecylthiophene), Synth. Met., 1988, 26, 369–381.
  • [166] PANERO S., PASSERINI S., SCROSATI B., Conducting polymers: New electrochromic materials for advanced optical devices, Mol. Cryst. Liq. Cryst., 1993, 229, 97–109.
  • [167] XUE Q., YANG K., LIU H., CHEN X., JIANZHUANG J., ZHANG Q., Studies of casting and LB films of ferroelectric liquid crystalline polysiloxane, Mat. Science and Engineering, 1999, 10, 87–90.
  • [168] WALTON D. J., HALL C. E., CHYLA A., VINEY I. V. F., MURE J-M., Redox characterisation of competitively- doped polypyrroles, Synth. Met., 1993, 55–57, 1465–1472.
  • [169] GIUSEPPI-ELIE A., M. WILSON A., TOUR J. M., BROCKMANN T. W., ZHANG P., ALLARA D. L., Specyfic immobilization of electropolymerized polypyrrole thin films onto interdigitated microsensor electrode arrays), Langmuir, 1995, 11, 1768–1776.
  • [170] BERTHET G., BLANC J. P., GERMAIN J. P., LARBI A., MALEYSSON C., ROBERT H, Electroactive polymers in thin layers: A potential application as a gas sensor, Synth. Met., 1987, 18, 715–720.
  • [171] HANAWA T., KUWABATA S., HASHIMOTO H., YONEYAMA H., Gas sensitivities of electropolymerized polythiophene films, Synth. Met., 1989, 30, 173–181.
  • [172] LECLERC M., DIAZ F. M., WEGNER G., Structural analysis of poly(3-alkylthiophenes), Macromol. Chem., (1989) 190, 3105–3116.
  • [173] MCCULLOUGH R. D., The chemistry of conducting polythiophenes, Adv. Mater., 1998, 10, 93–116.
  • [174] SŁODUCHO J., ROSZAK S., CHYLA A., TAJCHERT K., Synthetic routes to bis(pyrrolyl) arylenes. Experimental and molecular modeling studies, New J. Chem., 2001, 25, 1175–1181.
  • [175] SWORAKOWSKI J., GONÇALVES D., OLIVEIRA O. N., Jr., FARIA, R. M. Deposition and electrical conductivity of poly(o-methoxyaniline)Langmuir–Blodgett films, Chem. Listy, 1995, 90, 52–55.
  • [176] GONÇALVES D., BULHÕES L. O. S., MELLO S. V., MATTOSO L. H. C.,. FARIA R. M, OLIVEIRA O. N., Jr., Electroactivity in poly(o-alkoxyaniline)Langmuir–Blodgett films, Thin Solid Films, 1994, 243, 544–546.
  • [177] MATTOSO L. H. C., MELLO S. V., RIUL A., Jr., OLIVEIRA O. N., Jr., FARIA R. M., Synthesis and characterization of poly(o-phenetidine) for the fabrication of Langmuir and Langmuir–Blodgett films, Thin Solid Films, 1994, 244, 714–717.
  • [178] NICOLAE C. A., FONTANA M. P., LAZZERI M., RUGGERI G., Langmuir–Blodgett films of a pyrrole derivative polymerized as a monolayer, Thin Solid Films, 1996, 284–285, 170–173.
  • [179] YUAN C. W., WU C. R., BAI J. J., YANG W. Y., WEI Y., Insertion of polypyrrole intomarachidic acid Langmuir–Blodgett films, Langmuir, 1995, 11, 5–7.
  • [180] LASCHEWSKY A., RINGSDORF H., Polymerization of amphiphilic dienes in Langmuir–Blodgett multilayers, Macromolecules, 1988, 21, 1936–1941.
  • [181] GABRIELLI G., PUGELLI M., BAGLIONI P., Orientation and compatibility in monolayers. II. Mixtures of polymers, J. Colloid Interface Sci., 1982, 86, 485–500.
  • [182] CEMEL A., FORT T., Jr., LANDO J. B., Polimerization of vinyl stearate multilayers, J. Polym. Sci., 1972, 10, 2061–2083.
  • [183] BOERS A. N., CHANG T. H. P., w, H. Ahmed, W. C. Nixon (red.), Microcircuit engineering,, p. 1, University Press, Cambridge, 1980.
  • [184] PETERSON I. R., RUSSEL G. J., ROBERTS G. G., A new model for the deposition of ω-tricosenoic acid Langmuir–Blodgett films layers, Thin Solid Films, 1983, 109, 371–378.
  • [185] KAJZAR F., MESSIER J., Solid state polymerization and optical properties of diacetylene Langmuir–Blodgett multilayers, Thin Solid Films, 1983, 99, 109–116.
  • [186] TIEKE B., GRAF H. J., WEGNER G., NAEGELE D., RINGSDORF H., BANERJIE A., DAY D., LANDO J., B., Polymerization of mono- and multilater forming diacetylenes, Colloid Polym. Sci., 1977, 255, 521–531.
  • [187] BUBECK C., WEISS K., TIEKE B., Sensitized photoreaction of diacetylene multilayers, Thin Solid Films, 1983, 99, 103–107.
  • [188] WEGNER G., Topochemical reactions of monomers with conjugated triple bonds. I. Polymerization of derivatives of 2,4-hexadiyn-1,6-diols in the crystalline state, Z. Naturforsh.,Teil B, 1969, 24, 824–832.
  • [189] BAUGHMAN R. H., Solid state synthesis of large polymer single crystals, J. Polym. Sci., Polym. Phys. Ed., 1974, 15, 1511–1535.
  • [190] H. NAKAHARA, K. FUKUDA, K. SEKI, S. ASADA, H. INOKUCHI, UV photoelectron spectroscopic study of the photopolymerizationof low-chain diacetylene monocarboxylic acid in Langmuir –Blodgett films, Chem. Phys., 1987, 118, 123–131.
  • [191] KANEKO F., DRESSELHAUS M. S., RUBNER M. F., SHIBATA M., KOBAYASHI S., Optical properties of Langmuir–Blodgett polydiacetylene films, Thin Solid Films, 1988, 160, 327–332.
  • [192] GÖBEL H. D., MÖHWALD H., Interdependence between crystallization and polymerization in diacetylene monolayers, Thin Solid Films, 1988, 159, 63–72.
  • [193] OZAKI M., IKEDA Y., NAGOYA I., An approach to the preparation of polyacene by LB method, Synth. Met., 1989, 28, C801–C806.
  • [194] TIEKE B., LIESER G., WEISS K., Parameters influencing polymerisation and structure of long-chain diyenol acids in multilayers, Thin Solid Films, 1983, 99, 95–102.
  • [195] OKADA S., PENG S., SPEVAK W., CHARYCH D., Color and chromism of polydiacetylene vesicles, Acc. Chem. Res., 1998, 31, 229–239.
  • [196] JOHNSON S. J., TILLMANN R. W., SAUL T. A., Liu B. L., KENNEY P. M.,.DAULTON J. S, H. E. GAUB, RIBI H. O., Formation of poly(diacetylene) thin films with uniform fluorescence, Langmuir, 1995, 11, 1257 1260.
  • [197] GRUNFELD F., PITT C. W., Diacetylene Langmuir–Blodgett layers for integrated optics, Thin Solid Films, 1983, 99, 249–255.
  • [198] FOX H. W., TAYLOR P., ZISMAN W. A., Polyorganosiloxanes – surface active properties, Ind. Eng. Chem., 1947, 39, 1401–1405.
  • [199] BERNETT M. K., ZISMAN W. A., Properties of poly[methyl(n-alkyl)siloxane] and poly[methyl(3,3,3- trifluoropropyl0siloxane] monolayer adsorbed on water, Macromolecules, 1971, 4, 47–53.
  • [200] RETTIG W., NACIRI J., SHSHIDHAR R., DURAN R. S., Monolayers and Langmuir–Blodgett films of a ferroelectric side-chain polymer and its constituent mesogen, Macromolecules, 1991, 24, 6539–6541.
  • [201] ALEXANDER A. E., Monolayers of porphyrins and related compounds, J. Chem Soc., 1937, 1813–16.
  • [202] BELLAMY W. D., GAINES G. L., TWEET A. G., Preparation and properties of monomolecule films of chlorophyl a and pheophytin a, J. Chem. Phys., 1963, 39, 2528–2538.
  • [203] HORSEY B. E., WHITTEN D. J., Environmental effects of photochemical reactions: Contrast in the photooxidation behaviour of protoporphyri IX in solution, monomolecular films, organic monolayer assemblies and micelles, J. Am. Chem. Soc., 1978, 100, 1293–1295.
  • [204] MERCER-SMITH J. A., WHITTEN D. G., Photochemical reactivity of organized assemblies. 15. Photoreactions of metalloporphyrines in supported monolayer assemblies and at assembly solution interfaces. Reductive addition of palladium complexes with surfactant and water-soluble dialkylanilines, J. Am. Chem. Soc., 1979, 101, 6620–6625.
  • [205] HOPF F.R., WHITTEN D. G., Photochemical reactions of organic monolayer assemblies. 5. Photochemical and thermal reactions of reactive intermediates formed by liquid photoejection in Ruporphyrins, J. Am. Chem. Soc., 1976, 98, 7422–7424.
  • [206] VANDEVYVER M., BARRAUD A., RUAUDEL-TEIXIER P., MILLARD P., GIANOTTI C., Structure of porphyrin multilayers obtained by the Langmuir–Blodgett technique, J. Colloid Interface Sci., 1982, 85, 571–585.
  • [207] LUK, S. Y. WILLIAMS J. O., Molecular thin films of porphyrin dimers prepared by the Langmuir–Blodgett (LB) technique, J. Chem. Soc. Chem. Commun., 1989, 158–159.
  • [208] JONES R., TREDGOLD R. H., HODGE P., Langmuir–Blodgett films of simple esterified porphyrins, Thin Solid Films, 1983, 99, 25–32.
  • [209] LEZNOFF C. C., LEVER A. B. P. (Eds.), Phthalocyanines, VCH Publ. Weinheim, 1989
  • [210] BRYNDA E., KALVODA L., KOROPECKY I., NESPUREK S., RAKUŠAN J., Copper tetra-4-tbutylphthalocyanine Langmuir–Blodgett films:photoelectrical and structural studies, Synth. Met., 1990, 37, 327–333.
  • [211] SCHWIEGK S., VAHLENKAMP T., XU Y., WEGNER G., Origin of orientation phenomena observed in layered Langmuir–Blodgett structures of hairy-rod polymers, Macromolecul., 1992, 25, 2513– 2525.
  • [212] CHYLA A., SWORAKOWSKI J., SZCZUREK A., BRYNDA E., NESPUREK S., Gas sensing device based on phthalocyanine LB Films, Mol. Cryst, Liq. Cryst., 1993, 230, 1–6.
  • [213] EMELIANOV I. L., KHATKO V. V., The composite phthalocyanine-based Langmuir–Blodgett films: structural peculiarities and NO-sensitive properties, Thin Solid Films, 1999, 354, 237–244.
  • [214] KU I.-H., LEE Y.-L.,. CHANG Ch.-H, YANG Y.-M., MAA J.-R., Influence of transfer promoters on the deposition and wettability characteristics of copper tetra-tert-butyl phthalocyanine Langmuir–Blodgett films, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2001, 191, 223–231.
  • [215] CHYLA A., LEWANDOWSKA A., S2à2'8&+2 J., GÓRECKA-DRZAZGA A., SZABLEWSKI M., 4-t-butyl-CuPc-PODT molecular composite material for an effective gas sensor, IEEE Trans. Diel. Electr.Insuln., 2001, 8, 559–565.
  • [216] VOGEL V., MÖBIUS D., Local surface potentials and electric dipole moments of lipid monolayers; contributions of the water/lipid and lipid/air interfaces, J. Coll. Inter. Sci., 1988, 126, 408–420.
  • [217] NAKAHARA H., FUKUDA K., KITAHARA K., NISHI H., Langmuir–Blodgett films of octaalkyl phthalocyanines, Thin Solid Films, 1989, 178, 361–366.
  • [218] ZLATKIN A., YUDIN S., SIMON J., HANACK M., LEHMAN H., Direct observation of the stacked structure in substiuted copper phthalocyanine LB films with STM. Advanced Materials for Optics and Electronics,1995, 5, 259–263.
  • [219] PALACIN S., Phthalocyanines in Langmuir and Langmuir–Blodgett films: J. Coloid Interface Sci., 2000, 87, 165–181.
  • [220] OBENG Y. S., J. BARD A., Langmuir films of C60 at the air/water interface, J. Am. Chem. Soc., 1991, 113, 6279–6280.
  • [221] BACK R., LENNOX R. B., C60 and C70 at the air/water interface, J. Phys.Chem., 1992, 96, 8149-8152.
  • [222] WILLIAMS G., PEARSON C., BRYCE M. R., PETTY M. C., Langmuir–Blodgett films of C60, Thin Solid Films, 1992, 209, 150–152.
  • [223] NAKAMURA T., TACHIBANA H., YUMURA M., MATSUMOTO M., AZUMI R., TANAKA M., KAWABATA Y., Formation of Langmuir–Blodgett films of fulerene, Langmuir, 1992, 8, 4–6.
  • [224] NAKAMURA T., TACHIBANA H., YUMURA M., MATSUMOTO M., TAKAGI W., Structure and physical properties of Langmuir–Blodgett films of C60 with amphiphilic matrix molecules, Synth. Met., 1993, 55–57, 3131–3136.
  • [225] JEHOULET Ch., OBENG Y. S., KIM Y.-T., ZHOU, F. BARD A. J., Electrochemistry and Langmuir trough studies of C60 and C70, J. Am.Chem. Soc., 1992, 114, 4237–4247.
  • [226] WANG P., METZGER R. M., BANDOW S., MARUYAMA Y, Superconductivity in Langmuir–Blodgett multilayers of C60 doped with potassium, J. Phys.Chem., 1993, 97, 2926–2927.
  • [227] GORTER E., GRENDEL F., On bimolecular layers of lipids on the chromocytef of the blood, J. Exp. Med., 1925, 41, 439.
  • [228] TIEN H. T., OTTOVA A. L., The lipid bilayer concept and its experimental realization: from soab bubles, kitchen sink, to bilayer lipid membranes, J. Membr. Sci., 2001, 4886, 1–35.
  • [229] GREGORIADIS G. (red.), Liposome technology. Interactions of liposomes with the biological milieu, 2nd ed., CRC Press: Boca Raton, FL, 1992, t. III.
  • [230] PLANT A. L., Supported lipid bilayermembranes as rugged cell membrane mimics, Langmuir, 1999, 15, 5128–5135.
  • [231] RYLEY S., CHYLA A.T., PETERSON I.R., An air-stable biomimetic Langmuir–Blodgett bilayer, Thin Solid Films, 2000, 370, 294–298.
  • [232] THOMA M., MOCHWALD H., Monolayers of didipalmitoylphosphtidylcholine at the oil-water interface, Colloids and Surfaces A: Phys. Eng. Asp., 1995, 95, 193–200.
  • [233] HARKINS W. D., Physical chemistry of surface films, Reinhold, New York, 1952.
  • [234] KJÆR K., ALS-NIELSEN J., HELM C.A., LAXHUBER L. A., MÖHWALD H., Ordering in liquid monolayers studied bysynchrotron x-ray diffraction and fluorescence microscopy, Phys. Rev. Lett., 1987, 58, 2224–2227.
  • [235] ZASADZINSKI J. A., VISWANATHAN R., MADSEN L., GARNAES J., SCHWARTZ D. K., Langmuir –Blodgett films, Science, 1994, 263, 1726–1733.
  • [236] MENTER J. W., TABOR D., Effect of temperature on lateral spacing of fatty acids monolayers on metals – electron-diffraction, Research (London), 1950, 3, 381–382.
  • [237] NASELLI C., RABE J.P., RABOLT J.F., SWALEN J. D., Thermally induced order-disorder transitions in Langmuir-Bldgett films, Thin Solid Films, 1985, 104, 173–178.
  • [238] BARRAUD A., RUAUDEL-TEIXIER A., ROSILIO C., Solid-state chemical reactions in organic monomolecular layers, Ann. Chim.(Paris), 1975, 10, 195–200.
  • [239] RABE J. P., NOVOTNY V., SWALEN J. D., RABOLT J.F., Structure and dynamics in a Langmuir–Blodgett films at elevated temperatures, Thin Solid Films, 1988, 159, 359–367.
  • [240] CHO Y., KOBAYASHI M., TADOKORO H., Raman band profiles and mobility of polymethylene chains, J. Chem. Phys., 1986, 84, 4636–4642.
  • [241] RIEGLER J. E., Thermal behaviour of Langmuir–Blodgett films. I. Electron diffraction studies on monolayers of cadmium stearate, arachidate and behenate, J. Phys. Chem., 1989, 93, 6475–6480.
  • [242] HAUTMAN J., KLEIN M. L., Simulation of a monolayer of akyl thiol chains, J. Chem. Phys., 1989, 91, 4994–5001.
  • [243] CLAESSON P., M., BERG J., M., The stability of carboxylic acid Langmuir–Blodgett films as studied by the surface force technique, Thin Solid Films, 1987, 176, 157–164
  • [244] JONES J. P., WEBBY G. M., Thermal desorption of Langmuir–Blodgett layers, J. Phys. D: Appl. Phys., 1987, 20, 226–231.
  • [245] LAXHUBER L. A., MÖWALD H., Analysis of multilayer thermodesorption spectra, Surf. Sci., 1987, 186, 1–14.
  • [246] LAXHUBER L. A., MÖWALD H., Thermodesorption spectroscopy of Langmuir–Blodgett layers, Langmuir, 1987, 3, 837–845.
  • [247] ULMAN A., An introduction to ultrathin organic film: from Langmuir–Blodgett to self assembly, Academic Press, Inc., Boston, 1991.
  • [248] HARKINS W. D., COPELAND L. E., A superliquid in two dimensions and a first-order change in a condensed monolayer. I. Energy, compressibilityand order of phase transformations, J. Chem. Phys., 1942, 10, 272–286.
  • [249] UNKGAR G., Structure of rotator phases in n-alkanes, J. Phys Chem., 1983, 87, 689–695.
  • [250] RIVIERE S., HENON S., MEUNIER J., SCHWARTZ D. K., TSAO M. W., KNOBLER C. M., Textures and phase transitions in Langmuir monolayers of fatty acids. A comparative Brewster angle microscope and polarizedfluorescence microscope study, J. Chem. Phys., 1994, 101, 10045–10051.
  • [251] LUTY T., ECKHARDT C. E., Phase transitionsin quasi-two-dimensional molecular solids. A microscopic theory of tilt and structural instabilities in Langmuir monolayers, J. Phys. Chem., 1995, 99, 8872–8887.
  • [252] LIN B., SHIH M. C., BOHANON T. M., ICE G. E., DUTTA P., Phase diagram of a lipid monolayers on the surface of water, Phys. Rev. Lett., 1990 65 191–194.
  • [253] ULMAN A., EILERS J. E., TILLMAN N., Packing and molecular orientationof alkanethiol monolayer on gold surfaces, Langmuir, 1989, 5, 1147–1152.
  • [254] FROMHERZ P., OELSCHLÄGEL U., WILKE W., Medium X-ray scattering of Langmuir–Blodgett films of cadmium salts of fatty acids, Thin Solid Films, 1988, 159, 421–427.
  • [255] NICKLOW R. M., POMERANTZ M., SEGMÜLLER A., Neutron diffraction from small numbers of Langmuir–Blodgett monolayers of manganese stearate, Phys. Rev. B, 1981, 23, 1081–1087.
  • [256] DAY D., LANDO J. B., Electron diffraction studies of multilayers of vinyl stearate, J. Polym. Sci., Polym Chem. Ed., 1978, 16, 1431–1434.
  • [257] RUSSEL G. J., PETTY M. C., PETERSON I. R., ROBERTS G. G., LLOYD J. P., Kan K.K., A RHEED study of cadmium stearate Langmuir–Blodgett films, J. Mater. Sci., 1984, 3, 25–28.
  • [258] HAVINGA E., De WAEL J., Untersuchung Monomolekularer Filme mit Hilfe von Elektronenstrahlen, Recl. Trav. Chim. Pays-Bas, 1937, 59, 375–381.
  • [259] ZINGSHEIM H. P., STEM as a tool in the construction of two-dimensional molecular assemblies, Scanning Electron Microsc., 1977, 1, 357–364.
  • [260] BONNEROT A., CHOLLET P. A., FRISBY H., HOCLET M., Infrared and electron diffraction studies of transient stages in very thin Langmuir–Blodgett films, Chem. Phys., 1985, 97, 365–377.
  • [261] PETERSON I. R., RUSSEL G. J., The deposition and structure of LB films of long-chain acids, Thin Solid Films, 1985, 134, 143–152.
  • [262] FUKUDA K., SHIBASAKI Y., NAKAHARA H., Effects of molecular arrangement on polymerization reaction in Langmuir–Blodgett films, Thin Solid Films, 1983, 99, 87–94.
  • [263] CHOLLET P. A., Determination by infrared absorption of the orientation of molecules in monomolecular layers, Thin Solid Films, 1978, 52, 343–360.
  • [264] TAKENAKA T., NOGAMI K., GOTOH H., GOTOH R., Studies on build-up films by means of the polarized infrared ATR spectrum. I. Build-up films of stearic acid, J. Colloid Interface Sci., 1971, 35, 395–402.
  • [265] RABE J. P., SWALEN J. D., OUTKA D. A., STÖHR J., Near-edge X-ray absorption fine structure studies of oriented molecular chains in polyethylene and Langmuir–Blodgett monolayers on silicon (111), Thin Solid Films, 1988, 159, 275–283.
  • [266] RABE J. P., RABOLT J. F., BROWN C. A., SWALEN J. D., Polymerization of two unsaturated fatty acid esters in Langmuir–Blodgett film as studied byIR spectroscopy, Thin Solid Films, 1985, 133, 153–159.
  • [267] DIERKER S. B., MURRAY C. A., LEGRANGE J. D., SCHLOTTER N. E., Characterization of order in Langmuir–Blodgett monolayers by unenhanced Raman spectroscopy, Chem. Phys. Lett., 1987, 137, 453–457.
  • [268] ZIMBA C. G., HALLMARK V. M., RABOLT J. F., SWALLEN J. D., Fourier transform Raman spectroscopy on thin films, Thin Solid Films, 1988, 160, 311–316.
  • [269] KNOLL W., PHILPOTT M. R., GOLDEN W. G., Surface infrared and surface enhanced Raman vibrational spectra of monolayer assemblies in contact with rough metal surfaces, J. Chem. Phys., 1982, 77, 219–225.
  • [270] VEALE G., GIRLING I. R., PETERSON I. R., A comparison of deposition speed, epitaxy and crystallinity in Langmuir–Blodgett films of fatty acids, Thin Solid Films, 1985, 127, 293–303.
  • [271] BIRD G. R., DEBUCH G., MÖBIUS D., Preparation of the totally ordered monolayer of a chromophore by rapid epitaxial attachment, J. Phys. Chem., 1977, 81, 2657–2663.
  • [272] STAROMLYNSKA J., SAUNDERS F. C., SMITH G. W., A technique for the characterization of Langmuir– Blodgett films, Mol. Cryst. Liq. Cryst., 1984, 109, 233–243.
  • [273] PITT C. W., WALPITA L. M., Lightguiding in Langmuir–Blodgett films, Thin Solid Films, 1980, 68 101–127.
  • [274] MOBIUS D., MILLER R. (red.), Organized monolayers and assemblies: structure, processes and function, Elsevier, Amsterdam, 2002 (Studies in interface science, Vol.16).
  • [275] ADAMSON P., Differential reflection spectroscopy of surface layers on thick transparent substrates with normally incident light, Opt. Spectrosk., 1996, 80, 459–468.
  • [276] ABELES F., Recherches sur la propagation des ondes electromagnetiques sinusoidales dans les milieux stratifies. Application aux couches minces, Ann. Phys (Paris), 1950, 5, 596–640.
  • [277] LAXHUBER L. A., ROTHENHÄUSLER B., SCHNEIDER G., MÖHWALD H., Thermodesorption of ultrathin organic films studied by reflection, Appl. Phys. A, 1986, 39, 173–181.
  • [278] RAETHER H., Surface plasmons on smooth and rough surfaces and on gratings, Springer Verlag, Berlin, Heidelberg, 1988.
  • [279] SCHULZE G. E. R., Fizyka metali, PWN, Warszawa, 1982.
  • [280] OTTO A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Physik, 1968, 216, 398–410.
  • [281] KRETSCHMANN E., Determination of the optical constants of thin films by constant transmission curves, Z. Physik, 1969, 221, 346–356.
  • Literatura 5.9
  • [1] BLODGETT K. B., Forming barium stearate films and the others, U.S. Patent 2, 220, 800, 1940.
  • [2] BLODGETT K. B., The use interference to extinguish reflection of light from glass, Phys. Rev., 1939, 55, 391–404.
  • [3] BLODGETT K. B., Low-reflectance glass, U.S. Patent 2, 220, 862, 1940.
  • [4] GERMER L. H., STORKS K. H., Arrangement of molecules in a single layer and inmultiple layers, J. Chem. Phys., 1938, 6, 280–284.
  • [5] HANDY R. M., SCALA L. C., Electrical and spectral properties of Langmuirfilms, J. Electrochem. Soc., 1966, 113, 109–116.
  • [6] GAINES G. L., Jr., Insoluble monolayers at liquid-gas interfaces, Interscience Publishers, New York, 1966.
  • [7] KUHN H., MÖBIUS D., Systems of monomolecular layers-assembling andphysico-chemical behaviour, Angew. Chem. Int. Ed. Engl., 1971, 10, 620–637.
  • [8] KUHN H., MÖBIUS D., BÜCHER H., [w:] Physical Methods of Chemistry, A. Weissberger, B. Rossiter (red.), tom 1 część 3B rozdz. 7 Wiley, New York, 1972.
  • [9] AVIRAM A., RATNER M. A., Molecular rectifiers, Chem. Phys. Letters, 1974, 29, 277–283.
  • [10] CARTER F. L., The molecular device computer: point of departure for large scale cellular automata, Physica, 1984, 10D, 175–194.
  • [11] KAN K. K., ROBERTS G. G., PETTY M. C., Langmuir–Blodgett film metal/insulator semiconductor structures on narrow band gap semiconductors, Thin Solid Films, 1983, 99, 291–296.
  • [12] DRABBLE J. R., Al.-KHOWAILDI S. M., Ultrasonic transducer action of LB films, Thin Solid Films, 1983, 99, 271–275.
  • [13] Di VENTRA M., LANG N. D., PANTELIDES S. T., Electronic transport in single molecules, Chemical Physics, 2002, 281, 189–198.
  • [14] AGRAÏT N., UNTIEDT C., RUBIO-BOLLINGER G., VIEIRA S., Electron transport and phonons in atomic wires, Chemical Physics, 2002, 281, 231–234.
  • [15] RYLEY S., CHYLA A.T., PETERSON I.R., An air-stable biomimetic Langmuir–Blodgett bilayer, Thin Solid Films, 2000, 370, 294–298.
  • [16] KAWAI H., Piezoelectricity of poly(vinylidene fluoride), Jpn. J. Appl. Phys., 1969, 8, 975–976.
  • [17] NOVAK V.R., MYAGKOV I.V., Piezoelectric effect in multilayer Langmuir films, Pis’ma Zh. Tekh. Fiz., 1985, 11, 385–388.
  • [18] ROBERTS G. G., HOLCROFT B., ROSS J., BARRAUD A., RICHARD J., Acoustoelectric devices incorporating Langmuir–Blodgett films, Br. Polym. J., 1987, 19, 401–407.
  • [19] SRIYUDTHSAK M., YAMAGISHI H., MORIIZUMI T., Enzyme-immobilized Langmuir–Blodgett film for a biosensor, Thin Solid Films, 1988, 160, 463–469. TSURUTA T., IJIRO K., Langmuir–Blodgett films of an enzyme-lipid complex for sensor membranes, Langmuir, 1988, 4, 1373–1375.
  • [20] OKAHATA Y., ARIGA K., Swelling behaviour and stability of Langmuir–Blodgett films deposited on a quartz crystal microbalance in a water phase, Thin Solid Films, 1989, 178, 465–471.
  • [21] BANDEY H. L., GONSALVES M., HILLMAN A. R., GLIDLE A., BRUCKENSTEIN S., Dynamic quartz crystal impedance measurements of polyvinylferrocene film deposition, J. Electroanal. Chem., 1996, 410, 219–227.
  • [22] DING H., EROKHIN V., RAM M. K., PADDEU S., NICOLINI C., Detection of hydrogen sulfide: the role of fatty acid salt Langmuir–Blodgett films, Mat. Sci. Eng. C, 2000, 11, 121–128.
  • [23] HOLCROFT B., ROBERTS G. G., Surface acoustic wave sensors incorporating Langmuir–Blodgett films, Thin Soli Films, 1988, 160, 445–452.
  • [24] BALLANTINE D. S., WHITE R. M., MARTIN S. J., RICCO A. J., FRYE G.C., ZELLERS E. T.,WOHLTIEN H., Acoustic wave sensors: Theory, Design and Physico-chemical applications, Academic Press, San Diego, 1987.
  • [25] HUANG F., UK Patent Application, No. 8729310, 1987.
  • [26] RICCO A.J., CROOKS R. M., OSBOURN G. C., Surface acoustic wave chemical sensor arrays: New chemically sensitive Interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures, Acc. Chem. Res. 1998, 31, 289–296.
  • [27] BLINOV L. M., DUBININ N. V., MIKHNEV L. V., YUDIN S. G., Polar Langmuir–Blodgett films, Thin Solid Films, 1984, 120, 161–170.
  • [28] JONES C. A., PETTY M. C., ROBERTS G. G., Pyroelectricity in ultra-thin organic superlattices, Proc. IEEE Int. Symp. Appl. Ferroelectr. 6th, 1986, 195–198.
  • [29] CHRISTIE P., JONES C. A., PETTY M. C., ROBERTS G. G., Dynamic pyrroelectric response of Langmuir– Blodgett film infrared detectors, J. Phys. D., 1986, 19, L167–L172.
  • [30] CAPAN R., BASARAN I, RICHARDSON T. H., LACEY D., A theoretical model for the pyroelectric response in Langmuir–Blodgett films, Mater. Sci. Eng. C, 2002, 22, 245–249.
  • [31] Abd. MAJID W. H., RICHARDSON T. H., LACEY D., TOPACLI A., Qualitative evaluation of pyroelectric mechanisms in Langmuir–Blodgett films containing a cyclic polysiloxane sybstituted with aliphatic side chains using Fourier transform infrared (FTIR) spectroscopy, Thin Solid Films, 2000, 376, 225–231.
  • [32] BIDDLE M. B., RICKERT S. E., Opportunities for Langmuir–Blodgett films in piezoelectric and pyroelectric devices, Ferroelectrics, 1987, 76, 133–150.
  • [33] SHEN Y. R., The principles of nonlinear optics, Wiley, New York, 1984.
  • [34] PRASAD P. N., WILLIAMS D. J., Introduction to nonlinear optical effects in organic molecules and polymers, Wiley, New York, 1990.
  • [35] BOSSARD C., SUTTER K., PR.75( P., HULLINGER J., FLÖRSHEIMER M., KAATZ P., GÜNTER P., [w:] A. F. Garito, F. Kajzar (red.), Organic nonlinear optical materials, Advances in optics, tom 1. Gordon and Breach, Basel, 1995.
  • [36] NICOUD J. F., TWEIG R. J., [w:] D. S. Chemla, J. Zyss (red.), Nonlinear optical properties of organic molecules and crystals, Academic Press, Orlando, 1987.
  • [37] SINGER K.D., LALAMA S. L., SOHN J. E., SMALL R. D., [w:] D. S. Chemla, J. Zyss (red.), Nonlinear optical properties of organic molecules and crystals, Academic Press, Orlando, 1987.
  • [38] ASHWELL G. J., Langmuir–Blodgett films: molecular engineering of non-centrosymmetric structures for second order nonlinear optical applications, J. Mater. Chem., 1999, 9, 1991–2003.
  • [39] GIRLING I. R., CADE N. A., KOLINSKI P. V., MONTGOMERY C. M., Observation of second-harmonic generation from a Langmuir–Blodgett monolayer of a merocyanine dye, Electronic Letters, 1985, 21, 169–170.
  • [40] ASHWELL G. J., SKJONNEMAND K., ROBERTS M. P. S., ALLEN D. W., LI X., SWORAKOWSKI J., CHYLA A., BIEŃKOWSKI M., Surface plasmon resonance and nonlinear optical studies of Langmuir–Blodgett films of a betaine dye, Colloids Surfaces A: Physicochem. Eng. Aspects, 1999, 155, 43–46.
  • [41] KAURANEN M., VERBIEST T., BOUTON C.,. TEERENESTRA M. N, CLAYS K., SCHOUTEN A. J., NOLTE R. J. M., PERSOONS A., Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores, Science, 270. 1995,.
  • [42] HALL R. B., RUSSEL J. N., MIRAGLIOTTA J., RABINOWITZ P. R., [w:] R. Vanselov, R. Howe (red.), Chemistry and physics of solid surfaces, Vol. 8, Springer, Berlin, 1990, s. 87.
  • [43] ASHWELL G. J., HARGREAVES R. C., BALDWIN C. E., BAHRA G. S., BROWN C. R., Improved secondharmonic generation from Langmuir–Blodgett films o fhemicyanine dyes, Nature, 1992, 357.
  • [44] SHEN Y. R., Optical second harmonic generation at interfaces, Annu. Rev. Phys. Chem., 1989, 40, 327–350.
  • [45] ASHWELL G. J., WHITTAM A. J., Quadratic enhancement of the second-harmonic intensity from alternate-layer Langmuir–Blodgett films of optically nonlinear dye and poly(t-butyl methacrylate), Mol. Cryst. Liq. Cryst., 1999, 337, 1–6.
  • [46] MANAKA T., IWAMOTO M., Enhancement of second-harmonic generation for phthalocyanine Langmuir–Blodgett films on metal electrodes, Thin Solid Films, 2001, 393, 119–123.
  • [47] ASHWELL G. J., LEESON P., BAHRA G. S., BROWN C. R., Aggregation-induced second-harmonic generation, J. Opt. Soc. Am. B, 1998, 15, 484–488.
  • [48] HU W., LIU Y., XU Y., LIU S., ZHOU S., ZHU D., The application of Langmuir–Blodgett films of a new asymmetrically substituted phthalocyanie, amino-tri-tert-butyl-phthalocyanine, in diodes and in all organic field-effect-transistors, Synth. Met., 1999, 104, 19–26.
  • [49] SZE S. M., Physics of semiconductor devices, Wiley, New York, 1981.
  • [50] HUA Y. L., PETTY M. C., ROBERTS G. G., AHMAD M. M., HANACK M., REIN M., Photoelectric properties of substituted silicon phthtalocyanine Langmuir–Blodgett film Schottky barrier and metal/ insulator/semiconductordevices, Thin Solid Films, 1987, 149, 161–168.
  • [51] METZGER R. M., El;ectrical rectification by a molecule: an advent of unimolecular electronic devices, Acc. Chem. Res., 1999, 32, 950–957., METZGER R. M., All about (N-hexadecylquinolin-4-ium-yl)methylidenetricyanoquinodimethanide, a unimolecular rectifier of electrical current, J. Mater. Chem., 2000, 10, 55–62. METZGER R. M., Three Langmuir–Blodgett monolayer rectifiers, AIP Conference Proc., 2002, 633(1), 531–536. METZGER R. M., Unimolecular electrical rectifiers, Chem. Reviews, 2003, 103, 3803–3834.
  • [52] ASHWELL G. J., GANDOLFO D. S., Molecular rectification using gold/(LB-film)/gold structure, J. Mater. Chem., 2001, 11, 246–248.
  • [53] FUJIHIRA M., NISHIYAMA K., YAMADA H., Photoelectrochemical responses of optically transparent electrodes modified with Langmuir–Blodgett films consisting of surfactant derivatives of electron donor, acceptor and sensitizer molecules, Thin Solid Films, 1986, 132, 77–82.
  • [54] DEISENHOFER J., MICHEL H., The photosynthetic reaction center of the purple bacterium Rhodopseudomonas viridis, (Nobel report), Angew. Chem., 1989, 101, 872–892.
  • [55] GRAETZEL M., Heterogenous photochemical electron transfer, CRC Press, Boca Raton, FL, 1988.
  • [56] POLYMEROPULOS E. E., MOBIUS D., KUHN H., Monolayer assemblies with functional units of sensitizing and conducting molecular components: photovoltage, dark conduction and photoconduction in systems with aluminium and barium electrodes, Thin Solid Films, 1980, 68, 173–190.
  • [57] CAMINATI G., RICCERI R.,GABRIELI G., TURRO N. J., Vectorial photoinduced electron transfer in phospholipid vesicles and Langmuir–Blodgett (LB) bilayers, Nuovo Cimento Soc. Fis. (Eng), 1994, 16D, 1471–1477.
  • [58] FOX M. A., CHANON M. (red.), Photoinduced electron transfer, cz. A–D, Elsevier, Amsterdam, 1989.
  • [59] KALYANASUNDARAM K. (red.), Photochemistry in microheterogenous systems, Academic Press, London, 1987.
  • [60] KATZ H. E., Organic molecular solids as thin film transistor semiconductors, J. Mater. Chem., 1997, 7, 369–376.
  • [61] PETTY M., Application of organized molecular films to electronic devices, [w:] D. MÖBIUS, R. MILLER (red.), Organized monolayers and assemblies: structure, processes and function, Elsevier, Amsterdam, 2002.
  • [62] HUDSON A. J., WEAVER M. S., w Functional organic and polymeric materials, T. H. Richardson (red.), Wiley, Chichester, 2000.
  • [63] BARKER P. S., Di BARTOLOMEO C., MONKMAN A. P., PETTY M. C., PRIDE R., Gas sensing using a charge-flow transistor, Sensors and Actuators B, 1995, 25, 451–453.
  • [64] BURROUGHES J. H., BRADLEY D. D. C., BROWN A. R., MARKS R. N., MACKAY K., FRIEND R. H, BURNS P. L., HOLMES A. B., Light emitting diodes based on conjugated polymers, Nature, 1990, 347, 539–541.
  • [65] PARKER I. D., Carrier tunneling and device characteristics in polymer light-emitting devices, J. Appl. Phys. 1994, 75, 1656–1666.
  • [66] BALDO M. A., LAMANSKY S., BURROWS P. E., THOMPSONM. E., FOREST S. R., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., 1999, 75, 4–6.
  • [67] SOKOLIK I., YANG Z., KARASZ F. E., MORTON D. C., Blue light electroluminescence from p-phenylene vinylene-based copolymers, J. Appl. Phys. 1993, 74, 3584–3586.
  • [68] JIANG X. Z., LIU Y. Q., LIU S. G., QIU W. F., SONG X. Q., ZHU D.B., Reddish-orange light-emitting diodes made with N,N’-bis(1-naphthyl)-3,4,9,10-perylenebis (dicarboximide), Synth. Met., 1997 91, 253–256.
  • [69] NUESCH F., CARRARA M., SCHAER M., ROMERO D. B., ZUPPIROLI L., The role of copper phthalocyanine for charge injection into organic light emitting devices, Chem. Phys. Lett., 2001, 347, 311–317.
  • [70] GAO J., HEEGER A. J., LEE J. Y., KIM C. Y., Soluble polypyrrole as the transparent anode in polymer light-emitting diodes, Synth. Met., 1996, 82, 221–223.
  • [71] ROBERTS G. G., MCGINNITY T. M., BARLOW W. A., VINCETT P. S., The ac and dc conduction in lightly substituted anthracene Langmuir films, Thin Solid Films, 1980, 68, 223–232.
  • [72] HONG Y., MILLER L. L., GRAF D. D., MANN K. R., ZINGER B., Electroluminescence from a polyester containing oligothiophenes in the main chain, enhanced by diimide electron transport agent, Synth. Met., 1996, 82, 189–191.
  • [73] CHOI K. H., HWANG D. H., LEE H. M., DO L. M., ZYUNG T. H., Electroluminescent behaviour of polymer/organic heterostructure devices, Synth Met., 1998, 123–126.
  • [74] KARG S., SCOTT J. C., SALEM J. R., ANGELOPOULOS M., Increased brightness and lifetime of polymer light emitting diodes with polyaniline anodes, Synth. Met., 1996, 80, 111–117.
  • [75] BROWN T. M., KIM J. S., FRIEND R. H., CACIALLI F., DAIK R., FEAST W. J., Build-in electroabsorption spectroscopy of polymer light-emitting diodes incorporating a dopped poly(3,4- ethylenedioxythiophene) hole injection layer, Appl. Phys. Lett., 1999, 75, 1679–1681.
  • [76] MEIER M., CÖLLE M., KARG S., BUCHWALD E., GMEINER J., RIESS W., SCHWOERER M., Metal/ insulator/polymer LEDS basen on PPV, Mol. Cryst. Liq. Cryst., 1996, 283, 197–202.
  • [77] HUNG L. S., TANG C. W., MASON M. G., Enhanced electron injection in organic electroluminescence devices using an Al./LiF electrode, Appl. Phys. Lett., 1997, 64, 152–154.
  • [78] JUNG G. Y., PEARSON C., PETTY M. C. w D. MÖBIUS, R. MILLER (red.) Novel methods to study interfacial layers, vol. 11, Studies in interface science, Elsevier, Amsterdam, 2001.
  • [79] KIM J. S., GRANSTRÖN M., FRIEND R. H., JOHANNSON N., SALANECK W. R. DAIK R., FEAST W. J., CACIALLI F., Indium-tinoxide treatments for single- and double-layer polymer light-emitting diodes; The relation between the anode physical, chemical and morphological properties and the device performance, J. Appl. Phys., 1998, 84, 6859–6870.
  • [80] BOLOGNESI A., BAJO G., PALOHEMIO, J., ÖESTERGÄRD T., STUBB H., Polarized electroluminescence, from an oriented poly(3-alkylthiophene) Langmuir–Blodgett structure, Adv. Mater., 1997, 9, 121–124.
  • [81] BURNS S. E., PFEFFER N., GRÜNER J., NEHER D., FRIEND R. H., Microcavity optical mode structure measurements via absorption and emission of polymer thin films, Synth. Met., 1997, 84, 887–888.
  • [82] CARTER F. L. (red.), Molecular electronic devices, Dekker, New York, 1982.
  • [83] DÜRR H., BOUAS-LAURENT H., (red.). Photochromism. Molecules and systems, Elsevier, Amsterdam, 1990.
  • [84] ÅSTRAND P. -O., RAMANUJAM R. S., HVILSTED S., BAK K. L., SAUER S. P. A., Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials, J. Am. Chem Soc., 2000, 122, 3482–3487.
  • [85] TALATY E. R., FARGO J. C., Thermal cis–trans isomerization of substituted azobenzenes. Correction of the literature, J. Chem. Soc., Chem. Commun., 1967, 65–66.
  • [86] IKEDA T., TSUTSUMI O., Optical switching and image storage by means of azobenzene liquidcrystal films, Science, 1995, 268, 1873–1875.
  • [87] MARKAVA E., GUSTINA D., MUZIKANTE I., GERCA L., RUTKIS M., FONAVS E., Photochromism of some azobenzene derivatives in thin films as a function of the chemical properties of the molecule, Mol. Cryst. Liq. Cryst. 2001, 355, 381–400.
  • [88] AHUJA R. C., MAACK J., TACHIBANA H., Unconstrained cis-trans isomerization of azobenzene moieties in desinged mixed monolayers at the air/water interface, J. Chem. Phys., 1995, 99, 9221–9229.
  • [89] MATSUMOTO M., TERRETTAZ S., TACHIBANA H., Photo-induced structural changes of azobenzene Langmuir–Blodgett films, Adv. Colloid Interface Sci., 2000, 87, 147–164.
  • [90] CHYLA A., BIEŃKOWSKI M., SWORAKOWSKI J., KOŹLECKI T., WILK K.A., Photochromic properties of anionic azobenzene amphiphiles in solution and Langmuir–Blodgett films, Progr. Colloid Polym. Sci., 1997, 105, 153–159.
  • [91] CHYLA A., KOŹLECKI T., MATUSZEWSKA B. SWORAKOWSKI J., WILK K.A., Photochromic properties of anionic azobenzene amphiphiles in solution and Langmuir–Blodgett films, X Conference of the European Colloid and Interface Society, Åbo (Turku), Finlandia, 1996, książka abstraktów P-IV. 21.
  • [92] RAU H. LUDDECKE E., On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion, J. Am. Chem. Soc., 1982, 104, 1616–1620.
  • [93] NAITO T. HARIE K, MITA I., Photochemistry in polymer solids 11. The effect of the size of reaction groups and the mode of photoisomerization on photochromic reaction in polycarbonate film, Macromolecules, 1991, 24, 2907–2911.
  • [94] SOKALSKI W. A., GÓRA R. W., BARTKOWIAK W., KOBYLIŃSKI P., SWORAKOWSKI J., CHYLA A.,LESZCZYŃSKI J., New theoretical insight into the thermal cis-trans isomerization of azo compounds: Protonation lowers the activation barrier, J. Chem. Phys., 2001, 114, 5504–5508. CHYLA A., SWORAKOWSKI J., SOKALSKI W. A., KOZIELECKI T., WILK K. A., Enhanced cis–trans isomerization rate in aliphatic azobenzene derivative on aqueous subphase. Materiały Konferncji ECOF 7, 14–18 wrzesień 1998, s.297
  • [95] MATCZYSZYN K., BARTKOWIAK W., LESCZYNSKI J., Influence of the environment on kinetics and electronic structure of asymmetric azobenzene derivatives – experiment and quantum-chemical calculations, J. Mol. Struct., 2001, 565–566, 53–57.
  • [96] TACHIBANA H., AZUMI R., TANAKA M., MATSUMOTO M., SAKO S.-i., SAKAI H., ABE M., KONDO Y., YOSHINO N., Structures and photoisomerization of the polyion complex Langmuir–Blodgett films of an amphiphile bearing two azobenzene units, Thin Solis Films, 1996, 284–285, 73–75.
  • [97] BREDAS J. L., STREET G.B., Polarons, bipolarons and solitons in conducting polymers, Acc. Chem. Res., 1985, 18, 309–315.
  • [98] WALTON D. J., HALL C. E., CHYLA A., VINEY I. V. F., MURE J-M., Redox characterisation of competitively- doped polypyrroles, Synthetic Metals, 1993, 55–57, 1465–1472.
  • [99] SWORAKOWSKI J., BIEŃKOWSKI M., CHYLA A., KUCHARSKI S., Multicomponent LB films containing poly(3-n-alkylthipohenes), Macromol. Symp., 1996, 104, 115–126.
  • [100] BARTKIEWICZ S., BIEŃKOWSKI M., CHYLA A., SWORAKOWSKI J., Electrical conductivity of Langmuir– Blodgett films of pre-formed polymers, J. U. Von SCHUETZ (red.), 2nd European Conference on Molecular Electronics, Kloster Banz, 1994, s. 147–148.
  • [101] GAZARD M., w T. A., SKOTHEIM (red.), Handbook of conducting polymers, Marcel Dekker, New York, 1986, tom 1, s. 673.
  • [102] YAMAMOTO H., SUGIYAMA T., TANAKA M., Electrochromism of metal-free phthalocyanine Langmuir– Blodgett films, Jpn. J. Appl. Phys., Part 2, 1985, 24, 305–307.
  • [103] REICH R., SCHEERER R., Effect of electric fields on the absorptionspectrum of dye molecules in lipid layers. IV.Electrochromism of oriented chlorophyll b, Ber. Bunsenges. Phys. Chem., 1976, 80, 542–547.
  • [104] ROBERTS G. G. (red.), Langmuir–Blodgett films, Plenum Press, New York, 1990. ULMAN A., An introduction to ultrathin organic films, Academic Press, San Diego, 1991.
  • [105] PEREZ H., BARRAUD A., Doped (conducting) and undoped (semi insulating) LB films; application to gas sensing, Synth. Met., 1993, 61, 23–29.
  • [106] CHYLA A., SWORAKOWSKI J., SZCZUREK A., BRYNDA E., NESPUREK S., Gas sensing device based on phthalocyanine LB films, Mol. Cryst. Liq. Cryst., 1993, 230, 1–6.
  • [107] CHYLA A., LEWANDOWSKA A., SOŁODUCHO J., GÓRECKA-DRZAZGA A., SZABLEWSKI M., 4-t-butyl-CuPc-PODT Molecular composite Material for an effective Gas sensor, IEEE Trans. DEI, 2001, 8, 559–565.
  • [108] RELLA R., SICILIANO P., QUARANTA F., PRIMO T., VALLI L., SCHENETTI L. MUCCI A., IAROSSI D., Gas sensing measurements and analysis of the optical properties of poly [3-(buthylthio)thiophene]Langmuir–Blodgett films, Sensors and Actuators B, 2000, 68, 203–209.
  • [109] DING H., EROKHIN V., RAM M. K., PADDEU S., VALKOVA L., NICOLINI C., A physical insight into the gas-sensing properties of copper (II) tetra-(tert-butyl)-5,10,15,20-tetraazaporphyrin Langmuir– Blodgett films, Thin Solid Films, 2000, 379, 279–286.
  • [110] DOOLING C. M., RICHARDSON T. H., Thickness dependence of the toxic gas response in EHO Langmuir–Blodgett films prepared by ultrafast deposition, Mat. Sci. Eng. C, 2002, 22, 269–274.
  • [111] SWAGER T.M., The molecular wire approach to sensory signal amplification, Acc. Chem. Res. 1998, 31, 201–207.
  • [112] SIM K. W., Stedy-state model for an organic conducting salt NADH enzyme electrode, Analytica Chimica Acta, 1993, 273, 165–174.
  • [113] GARDNER J. W., PEARCE T.C., FRIEL S., BARTLET P. N., BLAIR N., A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers, Sensors and Actuators B, 1994, 18–19, 240–243.
  • [114] Di NATALE C., DAVIDE F. A. M., D’AMICO A., NELLI P., GROPPELLI S., SBERVEGLIERI G., An. Electronic nose for the recognition of the vineyard of a red vine, Sensors and Actuators B, 1996, 33, 83–88.
  • [115] TAN T. T., LOUBET F., LABRECHE S., AMINE H., Quality control of coffee using the FOX 400 electronic nose, Proc. ISIE’97, Guimaraes, Portugal, 1997.
  • [116] TADEUSIEWICZ R., Sieci neuronowe, AOW, Warszawa, 1993.
  • [117] DEMUTH H., BEALE M., Neutral Network Toolbox – For use with MATLAB, Users Guide, ver. 4.
  • [118] CASALINI R., GOLDENBERG L. M., PEARSON C., TANNER B. K., PETTY M. C., The electrical behavior of multilayer polypyrrole films, J. Phys. D: Appl. Phys., 1998, 31, 1504–1510.
  • [119] van der PAUW L. J., Determination of resistivity tensorand Hall tensor of aisotropic conductors, Philips Res. Repts., 1961, 16, 187–195.
  • [120] BLYTHE A. R., Electrical resistivity measurements of polymer materials, Polymer Testing, 1984, 4, 195–209.
  • [121] CHYLA A., SOŁODUCHO J., WALTON D., MIROŃCZYK A., Mono- and dialkyl-substituted (pyrrol-2 -yl)fluorene – new sensoric materials, 21st Discussion Conference of P.M.M. and 9th ERPOS Conference, Programme Booklet, Vol. K 76, Czech Republic Acad. Sci., 2002.
  • [122] DOMAGALSKA B. W., WILK K. A., CHYLA A., Molecular organization of amphiphilc conjugated polyenals in LB mono and multilayers, K. A. WILK (red.), Surfactants and dispersed systems in theory and practice, Materiały Konferencji, Polanica Zdr., 2003, 271–276.
  • [123] CHEŁKOWSKI A., Fizyka dielektryków, PWN, Warszawa, 1979.
  • [124] VALDES L. B., Resistivity measurements on germanium for transistors, Proc. of the I.R.E., February 1954.
  • [125] FOSTER R., Organic charge-transfer complexes, Academic Press, London, 1969.
  • [126] CHYLA A., SOŁODUCHO J., KOWALSKA K., Gas sensing properties of the CT-complexe pf fluorine derivative with TCNQ, K. A. WILK (red.), Surfactants and dispersed systems in theory and practice. Materiały konferencji, Polanica Zdr., 2003, 311-316
  • [127] GOSH A. V., ZAHID F., DATTA S., BIRGE R. R., Charge transfer in molecular conductors – oxidation or reduction?, Chem. Phys., 2002, 281, 225–230.
  • [128] MOTT N. F., DAVIS E. A., Electronic processes in noncrystalline materials, Claderon Press, Oxford, 1979.
  • [129] SINGH R., TANDON R. P., SINGH G. S., CHANDRA S., Evaluation of Mott’s parameters in tetraflouroborate( 1-)-dopped polypyrrole films, Phil. Mag. B, 1992, 66, 285–291
  • [130] SHENG P., SICHEL E. K., GITTELMAN J. I., Fluctuation-induced tunneling conduction in carbon–poly(vinylchloride) copmosites, Phys. Rev. Lett., 1978, 40, 1197–1200.
  • [131] WEGNER G., RÜHE J., The structural background of charge-carrier motion in conductin polymers, Faraday Discuss. Chem. Soc., 1989, 88, 333–349.
  • [132] CHOJNACKI H., CHYLA A., LORENZ K., PIGOŃ K., Dependence of electrical conductivity of benzidine – 7,7,8,8-tetracyano-p-quinodimethane complex on solvent vapour pressure, Prace Naukowe Instytutu Chemii Organicznej i Fizycznej Politechniki Wrocławskiej, Seria: Konferencje, 1974 7, 276-281
  • [133] CHOJNACKI H., LORENZ K., PIGOŃ K., Combined hopping and tunneling mechanism of electron transport and doping effects in chloranil-trimethylamine charge-transfer complex, Phys. Stat. Sol. (a), 1973, 20, 211–216.
  • [134] PUNKKA E., RUBNER M. F., HETTINGER J. D., BROOKS J. S., HANNAHS S. T., Tunneling and hopping conduction in Langmuir–Blodgett thin films of poly(3-hexylthiophene), Phys. Rev. B, 1991, 43, 9076–9086.
  • [135] MAC Donald J. R., Impedance spectroscopy, Wiley, New York, 1987.
  • [136] PETTY M. C., Langmuir–Blodgett films, Cambridge University Press, Cambridge, 1996.
  • [137] DRUMMOND C. J., ELLIOT P., FURLONG D. N., BARNES G. T., Water permeation through monolayer of polymerised surfactants, Thin Solid Films, 1992, 210/211, 69–72.
  • [138] KANG K., H., KIM J., M., JUNG S. B., CHANG J. S., KWON Y., S., Effect of pH on the properties of palmitic acid LB films for gas sensors, Sensors and Actuators B, 2001, 77, 293–296.
  • [139] RIEDL T., NITSCH, MICHEL T., Gas permeability of Langmuir–Blodgett (LB) films: Characterisation and application, Thin Solid Films, 2000, 379, 240–252.
  • [140] MIROGUCHI I., SHIMADA Y., TERAOKA Y., KAGAWA S., Gas permeation properties of porous glass modified with LB films of alkylalkoxysilane derivatives, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2000, 169, 125–130.
  • [141] GUTMANN F., LYONS L. E., Organic semiconductors, Wiley, New York, 1967.
  • [142] KUHN H., MÖBIUS D., BUCHER H., [w:] A. WEISSBERGER i W. ROSITER (red.) Techniques in chemistry, Wiley, New York, 1973, tom 1, cz. III B.
  • [143] PETTY M. C., Gas sensing using thin organic films, Biosens. Bioelectron., 1995, 10, 129–134.
  • [144] Quantum Research Corporation Database (http://www.qrc.com).
  • [145] RELLA R., SERRA A., SICILIANO P., TEPORE A., VALLI L., ZOCCO A., Langmuir–Blodgett multilayers based on copper phthalocyanine as gas sensor materials: Active layer–gas interaction model and conductivity modulation, Langmuir, 1997, 13, 6562–6567.
  • [146] HU W., LIU Y., XU Y., LIU S., ZHOU S., ZHU D., XU B., BAI CH., WANG CH., The gas sensitivity of a metal-insulator-semiconductor field-effect-transistor based on Langmuir–Blodgett films of a new asymmetrically substituted phthalocyanie, Thin Solid Films, 2000, 360, 256–260.
  • [147] Brągiel P., Szczepaniak E., Phthalocyanine as gas sensor – electronic structure on ZDO level, Mol. Cryst. Liq. Cryst., 1993, 229, 247–252.
  • [148] TRAVIS J., RAY A., K., THORPE S., C., COOK M., J., JAMES S., A., Langmuir–Blodgett films of copper tetra-tert-butyl phthalocyanine molecvulesas NO2 gas sensors, Meas. Sci. Technol., 1995, 6, 988–994.
  • [149] DING X., XU H., Gas sensing properties of asymmetrically substituted amphiphilic phthalocyanines, Sensors and Actuators B, 2000, 65, 108–110.
  • [150] HUO L. H., LI X. L., LI W., XI S. Q., Gas sensitivity of composite Langmuir–Blodgett films of Fe2O3 nanoparticle-copper phthalocyanine, Sensors and Actuators B, 2000, 71, 77–78.
  • [151] EMELIANOV I. L., KHATKO V. V., Gas sensing properties of the composite Langmuir–Blodgett films: effect of the film thickness and the Cd2+ addition into the subphase, Sensors and Actuators B, 1999, 60, 221–227.
  • [152] XIE D., JIANG Y., JIANG J., WU Z., LI Y., Gas sensitive Langmuir–Blodgett films based on erbium bis[octakis(octyloxy)phthalocyaninato] complex, Sensors and Actuators B, 2001, 77, 260–263.
  • [153] LIANG B. J., ZHANG Y., YUAN C. W., WEI Y., CHEN W., Characterization of neodyminm bisphthalocyanine Langmuir–Blodgett films for gas-sensibility, Sensors and Actuators B, 1998, 46, 24–29.
  • [154] BARTKIEWICZ S., CHYLA A., SWORAKOWSKI J., JANIK R., KUCHARSKI S., Deposition, electrical conductivity and response to gases of two-component Langmuir–Blodgett Films Containing preformed poly(3-n-akylthiophenes), Polish J. Chem., 1994, 68, 1387–1393.
  • [155] EMELIANOV I. L., KHATKO V. V., The composite phthalocyanine-based Langmuir–Blodgett films: structural peculiarities and NO-sensitive properties, Thin Solid Films, 1999, 354, 237–244.
  • [156] RELLA R., SICILIANO P., TOSCANO G., VALLI L., SCHENETTI L., MUCCI A., IAROSSI D., Langmuir –Blodgett films of poly[3-(butylthio)thiophene]: optical properties and electrical measurements in controlled atmosphere, Sensors and Actuators B, 1999, 57, 125–129.
  • [157] PEREZ H., BUDACH W., PALACIN S., DEROST G., BARRAUD A., Nitrogen dioxide detection using low-conducting Langmuir–Blodgett films, Sensors and Actuators B, 1995, 26–27, 140–143.
  • [158] JAISWAL A., SINGH R. A., Semiconducting mixed Langmuir–Blodgett films of new charge-transfer complex II: N-octadecylbenzidine-TCNQ, Thin Solid Films, 2001, 394, 159–163.
  • [159] OHNUKI H., ISHIZAKI Y., SUZUKI M., DESBAT B., DELHAES P., GIFFARD M., IMAKUBO T., MABON G., IZUMI M., Metallic Langmuir and Langmuir–Blodgett films based on TTF derivatives and fatty acid, Material Science and Engineering C, 2002, 22, 227–232.
  • [160] GHOSH A. W., ZAHID F., DATTA S., BIRGE R., R., Charge transfer in molecular conductors – oxidation or reduction, Chem. Phys., 2002, 281, 225–230.
  • [161] BILEWICZ R., SAWAGUCHI T., CHAMBERLAIN II R. V., MAJDA M., Monomolecular Langmuir–Blodgett films at electrodes. Electrochemistry at single molecule „gate sites”, Langmuir, 1995, 11, 2256–2266.
  • [162] BRITO R., RODRIGUES V. A., FIGUEROA J., CABRERA C. R., Adsorption of 3-mercaptopropyltrimethoxysilane and 3-aminopropyltrimethoxysilane at platinum electrodes, J. Electroanal. Chem., 2002, 520, 47–52.
  • [163] BARD A. J., Integrated Chemical systems. A chemical approach to nanotechnology, J. Wiley and Sons, Inc., New York, 1994.
  • [164] BILEWICZ R., MAJDA M., Bifunctional monomolecular Langmuir–Blodgett films at electrodes. Electrochemistry at single molecule „gate sites”, J. Am. Chem. Soc., 1991, 113, 5464–5466.
  • [165] ZAWISZA I., BILEWICZ R., MONCELLI M. R., GUIDELLI R., Electrochemistry of Langmuir–Blodgett and self-organized monolayers of an azacrown ether, both pure and mixed with a phospholipid, J. Electroanal. Chem., 2001, 509, 31–41.
  • [166] ZAWISZA I., BILEWICZ R., LUBOCH E., BIERNAT F., Complexation of metal ions by azacrown ethers in Langmuir–Blodgett monolayers, J. Chem. Soc., Dalton Trans., 2000, 499–503.
  • [167] de SOUSA J. R., BATISTA A. A., DIÓGENES I. C. N., ANDRADE G. F. S., TEMPERINI M. L. A., LOPES L. G. F., de SOUSA MOREIRA I Characterization of a 1,4-dithiane gold self-assembled monolayer: an electrochemical sensor for the cyt-c redox process, J. Electroanal. Chem., 2003, 543, 93–99.
  • [168] MAJDA M., Translational Diffusion and electron hopping in monolayers at the air/water interface, Thin Films, 1995, 20, 331–347.
  • [169] KUNITAKE M., NASU K.,MANABE O., NAKASHIMA N., Transmembrane rectified electron transfer through π-coniugated electroactive Langmuir–Blodgett monolayers on gold electrodes, Bull. Chem. Soc. Jpn., 1994, 67, 375–378.
  • [170] XING Y. F., O’SHEA S. J., LI S. F. Y., Electron transfer kinetics across a dodecanethiol monolayer self assembled on gold, J. Electroanal. Chem., 2003, 542, 7–11.
  • [171] FLANNERY D., JAMES S. W., TATAM R., P., ASHWELL G., J., Fiber-optic chemical sensing with Langmuir–Blodgett overlay waveguides, Applied Optics, 1999, 38, 7370–7374.
  • [172] JOHAL S., S., STAINES S., E., JAMES S., W., TATAM R., P., ASHWELL G., J., A technique for depositing non-centrosymmetric Langmuir–Blodgett films onto optical fibers, Meas. Sci. Technol., 1999, 10, N60–N62.
  • [173] MILLER L., S., MCROBERTS A. M., WALTON D. J., PETERSON I. R., PARRY D. A., SYKESUD C. G. D., NEWTON A. L., POWELL B. D., JASPER C. A., Optical gas sensing using thin organic films, Thin Solid Films, 1996, 284–285, 927–931.
  • [174] MILLER L., S., MCROBERTS A., M., WALTON D., PARRY D., A., NEWTON A., L., Optical gas sensing using Langmuir–Blodgett films, Mat. Sci. Eng.: C, 1995, 3, 257–262.
  • [175] RICHARDSON T., H., DOOLING C., M., WORSFOLD O., JONES L., T., KATO K., SHINBO K., KANEKO F., TREGGONING R., VYSOTSKY M., O., HUNTER C., A., Taking advantage of optical and electrical properties of organic molecules for gas sensing applications, Thin Solid Films, 2001, 393, 259–266.
  • [176] CHYLA A., KUCHARSKI S., JANIK R., SWORAKOWSKI J., BIEŃKOWSKI M., Two-component Langmuir and Langmuir–Blodgett films containing monomeric and polymeric alkylheteroaromates: surface plasmon resonance and electrical conductivity, Thin Solid Films, 1996, 284–285, 496–499.
  • [177] BIEŃKOWSKI M., CHYLA A., SWORAKOWSKI J., wpływ tlenków azotu na warstwy Langmuira-Blodgett zawierające poli(3-n-oktadecylotiofen), Materiały X Ogólnopolskiej Konferencji kryształy Molekularne ’95, Poznań-Kiekrz, 1995, P-38
  • [178] KROTKIEWSKA B., PASEK M., KROTKIEWSKI H., Interaction of glycophorin A with lecitins using Surface Plasmon Resonance SPR, Acta Biochem. Pol., 2002, 49, 481–490.
  • [179] SWORAKOWSKI J., CHYLA A., BIEŃKOWSKI M. Formation and electrical and optical properties of multi-component Langmuir–Blodgett films containing poly(3-n-alkylthiophenes), [w:] F. Kajzar, V. M. Agranovich and C.Y.-C. Lee (red.): Photoactive Organic Materials, Science and Applications, Kluwer, Dortrecht, 1996, 441–456.
  • [180] KUCHARSKI S., JANIK R., BRYJAK M., BIEŃKOWSKI M., CHYLA A., SWORAKOWSKI J., Formation and deposition of Langmuir films of binary and ternary systems, Polish J. Chem., 1995, 69, 447–460.
  • [181] SMETAZKO M., WEISS-WICHERT C., SABA M., SCHALKHAMMER T., New synthetic bolaamphiphilic macrocyclic lipids forming artificial membranes, J. Supramol. Sci., 1997, 4, 495–501.
  • [182] RAO N., M., PLANT A., L., SILIN V., WIGHT S., HUI S., W., Characterization of biomimetic surfaces formed from cell membranes, Biophys. J., 1997, 73, 3066–3071.
  • [183] WILLIAMS L., M., EVANS S., D., FLYNN T., M., MARSH A., KNOWLES P., F., BUSHBY R., J., BODEN N., Kinetics of the unrolling of small unilamelar phospholipid vesicles onto self-assembled monolayers, Langmuir, 1997, 13, 751–757.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0016-0086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.