PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane zagadnienia spalania młodych paliw kopalnych o małym stopniu metamorfizmu

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Some problems of the combustion of young low-metamorphisms rank fossil fuels
Języki publikacji
PL
Abstrakty
PL
Młode węgle brunatne są znaczącym źródłem energii. W energetyce światowej ok. 30% energii elektrycznej pochodzi z ich spalania. Podobny udział węgli brunatnych w produkcji energii obserwuje się w Polsce. Problemem jest duża zawartość wilgoci w węglach brunatnych (około 50%), która obniża sprawność spalania, ponieważ w przypadku stosowania metod konwencjonalnych, w kotłach energetycznych 20-25% ciepła ze spalania węgla jest tracone na usunięcie zawartej w nim wody. Z tego powodu bardzo ważna staje się poprawa sprawności produkcji energii z węgla brunatnego. Jedną z metod pozwalających na poprawę jakości spalania i zwiększenie sprawności kotła oraz bloku energetycznego jest spalanie wstępnie wysuszonego węgla oraz wykorzystanie ciepła oparów z suszenia w układzie bloku. Dodatkową zaletą podniesienia sprawności bloku energetycznego jest zmniejszenie emisji CO2, gazu odpowiedzialnego za powstawanie efektu cieplarnianego. Zastosowanie koncepcji spalania wstępnie suszonego węgla brunatnego w kotłach energetycznych wymaga rozwiązania różnych problemów, przede wszystkim - oceny emisji toksycznych składników spalin i stopnia wypalenia spowodowanych większą kalorycznością węgla brunatnego wstępnie suszonego. Zastosowanie technologii spalania wysuszonych węgli dodatkowo czyni niezbędnym przeprowadzenie badań określających wpływ suszenia węgli na jego właściwości. Autorka koncentrowała się w swoich badania na określeniu wpływu różnych metod suszenia węgli na jego strukturę i właściwości, takie jak: porowatość, reaktywność, szybkość odgazowania oraz zapłon. Szczególnym przedmiotem badań był problem, istotny ze względu na emisję tlenków azotu, wpływu parametrów węgla i procesu spalania na zachowanie się azotu paliwowego, tj. jego wydzielanie się w różnych fazach spalania, poczynając od wydzielania się części lotnych, zapłon i spalanie pozostałości koksowej węgli brunatnych. Oceniono szybkość ubytku azotu w procesie spalania w stosunku do ubytku pierwiastka C i całkowitej masy badanego węgla. Badania prowadzono dla węgli brunatnych z siedmiu kopalni europejskich oraz torfu fińskiego, będących znaczącym źródłem energii w swoich krajach. Zanalizowano wpływ składu i rozmiaru węgla na rozdział azotu paliwowego pomiędzy części lotne i pozostałość koksową w procesie wolnej i szybkiej pirolizy w zależności od temperatury procesu oraz ubywanie azotu w procesie wypalania węgla w zależności od jego rozmiaru, zawartości związków alkalicznych, jak i temperatury procesu. Ponadto zanalizowano wpływ parametrów spalania (temperatura, stechiometria) oraz właściwości (skład i rozmiar) siedmiu wstępnie suszonych węgli brunatnych na formowanie się i redukcję NOx, a także stopień wypalenia. Następnie przebadano zachowanie się wstępnie suszonych węgli w procesie spalania, ze szczególnym uwzględnieniem wielkości emisji NO i SO2 i stopnia wypalenia w zależności od rozmiaru cząstek pyłu węgli wstępnie suszonych i temperatury spalania. Uzyskane wyniki badań pozwoliły na opracowanie układu technologicznego spalania wstępnie suszonego węgla brunatnego w bloku 200 MWe z kotłem pyłowym OP-650 oraz z kotłem fluidalnym CFB-670. Projekt takiego układu został zgłoszony w Urzędzie Patentowym.
EN
Young brown coals are substantial in power production. About 30% of the net amount of electricity produced in the world as well as in Poland is provided by brown coal fired plants. These fuels are commonly characterized by a high water content (-50%) which is why their efficiency in conventional power production is low in contrast to bituminous coal; 20-25% of heat from combustion of brown coal is lost to remove water from the coal. Thus the problem of improving the efficiency of power production from brown coal becomes very significant. Additional advantage of the increase of the efficiency of power production is decrease of green gas CO2 emission. However, the implementation of the concept of predried brown coal combustion in a boiler requires solution of different problems such as pollutant emission as well as burnout resulting from greater calorific values of predried brown coal. The author's investigations focused on the evaluation of the influence of various methods of drying of the brown coal on its the structure and properties such as porosity, reactivity, devolatilization rate and ignition. Special attention was paid to determination of the impact of coal characteristics and combustion parameters on the behaviour of fuel nitrogen in different stages of combustion, i.e. devolatilization, ignition and char combustion. The fractional fuel nitrogen loss rate with respect to carbon and the total mass loss during combustion of brown coal was evaluated. The investigations were carried out for brown coals from seven European mines and for finish peat used to power production. The effect of composition and size of brown coals (as well as) alkali species on the distribution of nitrogen fuel between char and volatile matter in the slow and rapid pyrolysis was analysed. The loss of fuel nitrogen in the process of combustion depending on temperature was also determined. The effect of parameters of combustion (temperature and stoichiometry) and properties of seven coals investigated (composition and size) on formation and reduction of NO and the burnout rate was analyzed. The behaviour of predried brown coals in the combustion process with respect to the emission of NO, SO2 and the burnout degree depending on the size of predried coal particles and the temperature of combustion were experimentally investigated. For this purpose, an available small-scale electrically heated combustor (20 kW) was used. On the basis of the results obtained, the technology of integrating predried brown coal combustion for power production based on the 200 MW and 235 MW units with conventional boilers and CFB was evaluated. This technological concept was patented.
Twórcy
autor
  • Instytut Techniki Cieplnej i Mechaniki Płynów Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław.
Bibliografia
  • [1] Aho J.M. et al., Conversion of peat and coal nitrogen through HCN and NH}to nitrogen oxides at 800 °C, Fuel, v. 72, 1993.
  • [2] Asay B.W., Smoot L.D., Hedman P.O., Combust. Sei. Technol., 35, 15-31, 1983.
  • [3] Atherton L.E., Proc. Int. Conf. Coal Science, 553.20, 1985.
  • [4] Attor A., Hendrickson G.G., In Coal Structure, Meyers R.A., Ed. Academic Press, New York, ss. 155-162, 1982.
  • [5] Axworthy A., AICHE Symp. Ser. 1971, 148, 43-50, 1971.
  • [6] Axworthy A.E., Schneider G.R., Shuman M., Dayan V.H., Chemistry of Fuel Nitrogen Conversion to Nitrogen oxides in Combustion, EPA-600/2-76-039, US EPA, 1976.
  • [7] Banks J.P., Burton D.R., Behavior of brown coal in press dewatering, Proceedings of Australian Coal Science Conference, Churchil, 199-206, 1984.
  • [8] Banks J.P., Burton D.R., Press dewatering of brown coal, part 1; exploratory studies. Drying Technology, 7, 3,443-475, 1989.
  • [9] Bartholomew C.H., Gopalakrishnan R., Fullwood M., Prepr.-Am. Chem. Soc., Div. Fuel Soc., 34, 982, 1991.
  • [10] Bassilakis R., Zhao Y., Solomon P.R., Seno M.A., Energy & Fuels, 710-720, 1999.
  • [11] Baxter L.L., Mitchel R.E., Fletcher T.H., Hurt R.H., Nitrogen Release during Coal Combustion, Energy & Fuels, 10, 188-196, 1996.
  • [12] Bergins C., Mechanismen und Kinetik der Mechanish/Thermishen Entwässerung von Braunkohle. Dissertation. Universität Dortmund, Shaker, Aachen, 2001.
  • [13] Bergins Ch., Kinetics and mechanism during mechanical/thermal dewatering of lignite, Fuel, 82, 355-364, 2003.
  • [14] Berkowitz N., The Chemistry of Coal, Elsevier, Amsterdam, 1985.
  • [15] Blair D.W., Wendt J.O.L., Bartok W., Evolution of nitrogen and other species during controlled pyrolysis of coal, XVI Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, ss. 475-489, 1976.
  • [16] Bowman C.T., Control of Combustion - Generated Nitrogen Oxide Emissions: Technology Driven by Regulation, Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, ss. 859-878, 1992.
  • [17] British Coal Corporation (1988), Chemical characterization of coal and coal products. EUR 11796 EN, Luxembourg, Commission of the European Communities, s. 108, Feb. 1988.
  • [18] Burch T.E., Tillman W.Y., Chen T.W., Lester R.B., Conway R.B., Sterling A.M., Energy & Fuels, 5, ss. 231-237, 1991.
  • [19] Burch T.E., Tillman F.R., Chen W.Y., Lester T.W., Conway R.B., Sterling A.M., Partitioning of nitrogenous species in the fuel-rich stage of reburning, Energy & Fuels, 5, s. 231, 1991.
  • [20] Burchill P., Some observations on the variation of nitrogen content and functionality with coal rank, In 1987 International Conference on coal science, Maastricht, The Netherlands, 26-30 Oct. 1987. Moulijn J.A., Nater K.A., Chermin H.A.G. (Eds), Amsterdam, Elsevier Science Publishers, ss. 5-8, 1987
  • [21] Burchill P., Welch L.S., Variation of nitrogen content and functionality with rank for some UK bituminous coals, Fuel, 68(1), 1-00-104, Jan. 1989.
  • [22] Buschieweke F., Hannees J.: Experimental investigations of brown drying in steam fluidized bed, Workshop Proceedings, Power generation Units with High Efficiency, Wroclaw, Poland, 187-19 November 1999.
  • [23] Cai H.Y., Guell A.J., Dugwell D.R., Kandiyoti R., Fuel, 72, 321, 1993.
  • [24] Chen W.Y., Ma L., AICHE J., 42, 9, 1996.
  • [25] Chen S.L., Heap M.P., Pershing D.W., Martin G.B., 19lh Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, ss. 1271-1280, 1982.
  • [26] Chan L.K., Sarofim A.F., Beer J.M., Combustion and Flame, 52, 37-45, 1983.
  • [27] Chen S.L., McCarthy J.M., Clarke W.D., Heap M.P., Seeker W.R., Pershing D.W., Bench and pilot scale process evaluation of reburning for in-furnace NOx reduction, Twenty-First Symposium (Int.) Combustion, s. 1159, The Combustion Institute, Pittsburgh, PA, 1986.
  • [28] Chen S.L., Cole J.A., Heap M.P., Kramlich J.C., McCarthy J.M., Pershing D.W., Advanced NOx reduction processes using -NH and -CN compounds in conjunction with staged air addition, Twen¬ty-Second Symposium (Int.) Combustion, ss. 1135-1145, The Combustion Institute, Pittsburgh, PA, 1986
  • [29] Chen S.L., Kramlich J.C., Seeker W.R., Pershing D.W., Optimization of Reburning for Advanced NOx control on Coal-Fired Boilers, J. Air Waste Management Assoc. 39, s. 1375, 1989.
  • [30] Charpenay S., Serio M.A., Solomon P.R., Proceedings of the 24th International Symposium on Combustion, The Combustion Institute, 1992.
  • [31] Chen J.C., Niksa S., Suppresed Nitrogen Evolution from Coal Derived Soot and Low- Volatility Chars. XXI Symposium (Int.) on Combustion, The Combustion Institute: Pittsburgh, ss. 1269-1276, 1992.
  • [32] Chen J.C, Niksa S., Energy & Fuels, 6, ss. 254-264, 1992.
  • [33] Chen W.Y, Ma L., Effect of heterogeneous mechanisms during reburning of nitrogen oxide, AIChE Journal, Vol. 42, No. 7, ss. 1968-1976, 1996.
  • [34] Coda B., Kluger F.D., Fortsch H., Spliethoff K.R.G., Coal - Nitrogen Release and NOx Evolution in Air-Staged Combustio, Energy & Fuels, 12, ss. 1322-1327, 1998.
  • [35] Coda B., Tognotti L., The prediction of char combustion kinetics at high temperature, Proceedings of the mediterian combustion Symposium 99, Antalya, 1999.
  • [36] Cope R.F., McDonald K.M., Arrington C.B., Hecker W.C., Energy & Fuels, 8, 1095, 1994.
  • [37] Cronauer D.C., Ruberto R.G., Silver R.S., Jenkins R.G., Davis A., Hoover D.S., Fuel, 63, 77, 1984.
  • [38] Cumming J.W., Reactivity assessment of coals via a weighted mean activation energy, Fuel, 63 (9), 1436-1440, 1984.
  • [39] Davidson R.M., Nitrogen in Coal, IEA PER/08 IEA Coal Research, London, 1994.
  • [40] De Soete G., 15th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, ss. 1093-1102, 1974.
  • [41] Dong-Ke Zhang, Terry F. The reactivity of pulverized coal char particle experiments using ignition, burnout and DTG techniques and partly burnt chars. Fuel, vol. 71, s. 1247, 1992.
  • [42] Dunne DJ., Agnew JB., Thermal upgrading of low-grade South Australia coal. Energy Sources, 14, 169-81, 1992.
  • [43] Evans D.G., The brown-coal/water system, Part:4 Shrinkage on drying., Fuel, vol. 52, July, 1973.
  • [44] Feng Guo and Hecker W.C., Effects of CaO and Burnout on the Kinetics of NO reduction by Beulah Zap char, XXVI Symp.(Inter.) on Combustion, ss. 2251-2257, 1996.
  • [45] Fenimore C.P., Combustion and Flame, 19, 289, 1972.
  • [46] Fireland W.A., Wessel R.A., J. Inst. Energy, 64, 41, 1991.
  • [47] Fleiner H., Die Trocknung stuckeriger Braunkohle. Berg-Huttenmanisches Jahrbuch, 74 (3), 104-109, 1979.
  • [48] Fohl J., Lugscheider W., Wallner F., Termer G., Entfemung von Wasser aus der Braunkohle; Teil 2, Thermishe Entwasserungsverfahremn , Braunkohle, 39,4, 78-87, 1987.
  • [49] Folsom B.A., i inni, EPRI/EPA 1995 Joint Symposium on Stationary Combustion NOx Control, Kansas City Missouri, Book 4, session 8, 1995.
  • [50] Freihant J.D., Prosua W., Knight N., Vranos A., Kollick H., Wicks K., Combustion Properties of Micronized Coal for High-Intensity Combustion Applications, Final Report for DOE/PETC Contract DE-AC 22-85PC80263; U.S. Department of Energy U.S.C. Washington, D.C., 1989.
  • [51] Fletcher T.H., Solomon P.R., XXV Symp. (Inter.) on Combustion, 463-474, 1994.
  • [52] Genetti D., Fletcher T.H., Energy & Fuels, 13, 1082-1091, 1999.
  • [53] Gethner J.S., Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem., 31 (4), 103-110, 1986.
  • [54] Glaborg P., Dam-Jjohansen K, Kristensen P.G., Reburning Rich-Lean Kinetics. Final Report, March 1991-December 1993, for Gas Research Institute Contract No. 5091-260-2126, December 1993.
  • [55] Gopalakrishnan R., Fullwood M.J., Bartholomew C.H., Energy Fuels, 8, 984, 1994.
  • [56] Gopalakrishnan R., Calvin H., Bartholomev K, Effects of CaO, High Temperature Treatment, carbon structure, and Coal rank on Intrinsic char oxidation Rates, Energy & Fuels, 10, 689-695, 1996.
  • [57] Gorbaty M.L., Advances and trends in understanding coal Structure, Fuel & Energy, 38, 1, 1997.
  • [58] Harb J.N., Smith E.E., Fireside corrosion in PC-Fired boilers, Prog. Energ. Combust. Sci., vol. 16, ss. 169-190, 1990.
  • [59] Harding N.S., Smoot L.D., Hedman P.O., AIChE J., 28, 573, 1982.
  • [60] Hardy T., Kordylewski W., Wstępne badania laboratoryjne z zastosowaniem węgla brunatnego do ograniczania emisji NOx metodą reburning, Materiały V krajowej konferencji „Ekologiczne i ekonomiczne wytwarzanie energii", Rydzyna, 1999.
  • [61] Hecker, W.C., McDonald K.M., Reade W., Sen M.R., Cope R.F., Proceedings of the 24th International Symposium on Combustion; The Combustion Institute; p 1225, 1992.
  • [62] Heek K.H., Progress of coal science in the 20th century, Fuel, 79, 1-26, 2000,
  • [63] Hein K.R.G., NOx abatement during combustion', Fluid Utilization and Environment, Intensive Course, Prague, 1991.
  • [64] Hengel, T.D., Walker P.L., Jr. Fuel, 63, 1214, 1984.
  • [65] Illan -Gomez M.J. et al., Energy & Fuels 7, 146-154, 1993.
  • [66] Jokela P., Yamanishi Y., Taylor A., Maier J., Hein K.R.G., Kakaras E., Nikolaides I.P., Buschieweke F., Tchorbadjski I., Ionel I., Kruczek H., Pre-Drying of moist Fuels for power production, Final report, Contract JOF3CT970037 and ERBIC2-CT97-0046, IVD Stuttgart, 2002.
  • [67] Kambara S., Takarada T., Toyoshima M., Kato K„ Energy & Fuels, 7, 1013-1020, 1993.
  • [68] Kelemen S.R., Gorbaty M.L., Vaughn S.N., Kwiatek P.J., Quantification of nitrogen forms in Argonne premium Coals. American Chemical Society, Division of Fuel Chemistry, Preprints, 38, (2), 1993, and Kelemen S.R., Gorbaty M.L., Kwiatek P.J., Quantification of nitrogen forms in Argonne premium Coals, Energy & Fuels, 1993.
  • [69] Kelemen S.R., Gorbaty M.L., Voughn S.N., Kwistek P.J., Chem. Preprints, 38, 384, 1993.
  • [70] Kelly M.D., Buckley M.A.N., Nelson P.F., Functional forms of nitrogen in coals and coal volatiles in relation to NOx formation. In: International Conference on Coal Science Newcastle upon Tyne, United Kingdom, Butterworth-Heinemann, ss. 356-359, 1991.
  • [71] Kilpinen P., Glarborg P., Hupa M., Reburning Chemistry, A Kinetic Modeling Study, Industrial Engineering Chemisty Research, vol. 31, no. 6, s. 1477, 1992.
  • [72] Kluger F.M., Hocquel J., Maier K.R.G., Combustion of Predried Brown Coal (PBC) - Experimental Investigation of Combustion Engineering Measures for Nitrogen Oxide Reduction, New Part Beach, CA, USA, September 2000.
  • [73] Kopsel R.F.W., et al., Fuel, 76, 345-351, 1996.
  • [74] Koziński J., Słupek S., Guthrie R., Reduction of Gaseous Pollutants Emissions from Liquid Fuel Flames, 9th Miami Int 1 Congress on Energy and Environment, no. abs. no. 393, Miami USA, 1989.
  • [75] Koziński J., Słupek S., Guthrie R., Cleaner Environment Through Modifications of Oil Combustion, First Int 1 Conference on Combustion Technologies for a Clean Environment, vol. II, no. 29.4, Vila-moura, Portugalia, 1991.
  • [76] Krevelen D.W.V., Schuger A., Coal science. Amsterdam, Elsevier, 1957.
  • [77] Kruczek H., The study of ignition of coal particles, Ph.D. Thesis, 1977.
  • [78] Kruczek H., Kordylewski W., Rybak W., Wpływ konsumpcji reagentów na warunki krytyczne wybuchu cieplnego, Inż. Chem., t.l, z. 3., 1980.
  • [79] Kruczek H., Kordylewski W., Rybak W., An analysis of critical igniion and extinction diametrs of solid particles, Comb. Sci. and Techn., vol. 26, 1981.
  • [80] Kruczek H., Modliński Z., Nitric Oxide Formation and Reduction in Staged Combustion in Swirl Cyclone Chamber, ENERGY SYSTEM and ECOLOGY, Proceedings of The International Conference Cracow, Poland, 1993.
  • [81] Kruczek H., Modliński Z., The analysis of nitric oxide formation on lean hydrocarbonic mixture combustion, Metallurgy and Foundry Engineering, vol. 19, z. 3, 1993.
  • [82] Kruczek H., Adamski R., Investigation of Pollution Emission from Polish Power stations and heat Generating Plants, w: EMISSION REDUCTION FOR THE INDUSTRIAL UTILISATION OF DOMESTIC SOLID FUELS IN EASTERN EUROPEAN COUNTRIES, Final Report January 1995-August 1997, PECO - Joule II extension.
  • [83] Kruczek H., Redukcja emisji NOx metodą reburningu gazowego z dodatkiem czynnika redukcyjnego, Konferencja: Doświadczenia i perspektywy modernizacji kotłów energetycznych dla obniżenia emisji NOx Szczyrk, 1997.
  • [84] Kruczek H. et all., Thermodynamic Analysis of Modified Power Plant Cycle Utilizing Condensation Heat from Pre-dried Brown Coal, Workshop Proceedings, Pre-drying Processes For The Efficient And Clean Utilization Of Brown Coal In The Enlarged EU Market, Athens, Greece - 23 April 1999.
  • [85] Kruczek H. et. al., Modified 200 MW power plant cycle utilizing predrying brown coal combustion, Workshop Proceedings Power Generation Units with High Efficiency, Wroclaw, Poland, 13.10. 1999.
  • [86] Kruczek H., Efekt parametrów spalania i zawartości związków wapnia w węglu na zachowanie się azotu paliwowego w poszczególnych stadiach spalania oraz na reaktywność, Raport na zlec. KBN nr 33105.2/W-9 - XII, 2000.
  • [87] Kruczek H. et all., Effect of type of low rank coal and its predrying and Ca, Na additives on NOx and SO-, emission, XXVIII Symp.(Inter) on Combustion, Edinburgh, Scotland 2000.
  • [88] Kruczek H., Hajduk A., Grochowski A., Emisja NOx i S02 ze spalania węgli brunatnych z udziałem biomasy, 2000, Prace Naukowe ITCiMP, nr 56, Wrocław 2000.
  • [89] Kruczek H., Łuczak M., Jabłoński J., Sposób spalania w kotle pyłowym oraz układ przygotowania ¡spalania w komorze kotła pyłowego. Zgłoszenie Patentowe 43/Z/2000.
  • [90] Kruczek H., Hardy T., „Reburning" - skuteczna metoda redukcji tlenków azotu z kotłów pyłowych, ENERGETYKA 2000, Wrocław.
  • [91] Kruczek H., Effect to brown coal and biomass co-combustion on reactivity, burnout and emission, IFRF, 13 Member Conference, Noordwijahout, Holand, 2001.
  • [92] Kruczek H., Łuczak M., Sposób spalania węgla w złożu kotła fluidalnego oraz układ do spalania węgla w złożu kotła fluidalnego, Zgłoszenie Patentowe 6/Z/2001.
  • [93] Kruczek H., Predrying of Moist Fuels for Power Production - Fuel Characterization, Combustion behavior of raw and predried brown coal, integration of predrying concepts into typical Polish plants, Research Report Joule-Thermie III Program, Contract IC20-CT970046, and March 2001.
  • [94] Kruczek H., Rydz W., Fireside Corrosion in AP-1650 and OP-430 Boilers Fired with Polish hard Coal. Conference Proceedings Power Production in the 21s' Century, Impacts of Fuel Quality and Operation. October/November 2001. Snowbird Utah, USA.
  • [95] Lanier W.S., Mulholland J.A., Beard J.T., Reburning Thermal and Chemical Process in a Two-Dimensional Pilot Scale System, Twenty-First Symposium (Int.) Combustion, s. 1171, The Combustion Institute, Pittsburgh, PA, 1986.
  • [96] Lee J.W., Chen S.L., Pershing D.W., Heep M.P., Western States Section, Combustion Institute, Brigham Young University, Provo, UT, 1979.
  • [97] Lin H., Hampartsoumian E., Gibbs B.P., Fuel, 1997, 76 (11), 985-993.
  • [98] Linares-Solano A., Hippo E.J., Walker P.L., Fuel, 65, 776, 1986.
  • [99] Lizzo A.A., Radovic L.R., Ind. Eng. Chem. Res., 30, 1735, 1991.
  • [100] Mackie J.C., Colket M.B, Nelson P.F., J. Phys. Chem., 94, 4099-4106, 1990.
  • [101] Mackie J.C., Colket M.B., Nelson P.F., Esler M., Int. J. Chem. Catalysis, 23, 733-760, 1991.
  • [102] Maier J., Spliethoff H., Kircherer A., Fingerle A., Hein K.R.G., Fuel, 73 (9), 1441-1452, 1994.
  • [103] Malte P.C., Pratt D.T., Combustion Science and Technology, 9:221, 1974.
  • [104] Maly P.M., Zamansky V.M., Ho L., Payne R., Alternative fuel reburning, Fuel, Vol.78, ss. 327-334, 1999.
  • [105] Mareb J., Wendt J.O.L., Fuel, 73 (7), ss. 1020-1026, 1994.
  • [106] McCollor D.P., Young B.C., Jones M.L., Benson S.A., Proceedings of the 22nd Combustion Institute, The Combustion Institute, s. 59, 1988.
  • [107] Mereb J.B., Wendt J.O.L., Reburning mechanisms in pulverized coal combustor, Twenty-Third Symposium (Int.) Combustion, s. 1273, The Combustion Institute, Pittsburgh, PA, 1990.
  • [108] Miknis F.P., Netzel D.A., Turner T.F., Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem., 38 (2), 609, 1993.
  • [109] Miknis F.P., Netzel D.A., Turner T.F. et all, Effect of Differnt Drying Methods on Coal structure and Reactivity Toward Liquefication, Energy & Fuels, 10, 631, 1996.
  • [110] Miller J. A., Bowman C.T., Mechanisms and modelling of nitrogen chemistry in combustion, Prog. Energy and Comb. Sci., 15, 287, 1989.
  • [111] Miller J.A., Bowman C.T., Mechanisms and modelling of nitrogen chemistry in combustion, Prog. Energy and Comb. Sci., 15, 287, 1989.
  • [112] Mitra-Kertley S., Mullins O.C., Branthaver J., et all, Prepr. Pap.-Am. Chem. Soc. ACS Div. Fuel Chem., 38, 762, 1993.
  • [113] Morely C., Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, s 23, 1981.
  • [114] Mori H., Asami K„ Ohtsuka Y., Energy & Fuels, 10, 1022-1027, 1996.
  • [115] Muzio L. J., Quartucy G.C., Implementing NOx control: Research to application, Prog. Energy Comb. Sci., vol. 23, 1997.
  • [116] Naoto Tsubouchi, Yasuo Ohtsuka, Formation of N2 during pyrolysis of Ca - loaded coals, Fuel, 81, p. 1423 -1431, 2003.
  • [117] Neavel, R., Fuel, 55, 237, 1976.
  • [118] Nelson P.F., Puckley A.N., Kelly M.D., Functional Forms of Nitrogen in Coals and the Release of Coal Nitrogen as NOx Precursors HCN and NH}. XXIC Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, ss. 1259-1267, 1992.
  • [119] Niksa S., Cho S., Energy Fuels, 10, 463^73, 1996.
  • [120] Niksa S.Z., 25th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, 1994.
  • [121] Niskoemisyjne Techniki Spalania w energetyce, praca pod red. W. Kordylewskiego, Wroclaw, 2000.
  • [122] O'Connor M.P., Stephenson et all, A collaborative project on the effects of coal quality on NOx emission and carbon burnout in pulverized coal fired utility boilers, Members 1999.
  • [123] Ohtuska Y., Tomita A., Fuel, 65, 1653, 1986.
  • [124] Perry S.T., A global Free Radical Mechanism for Nitrogen Release during Coal Devolatilization Based on Chemical Structure, Ph. Dissertation (Chemical Engineering), Brigham Young University, Provo, 1999.
  • [125] Perry S.T., Fletcher T.H., Modeling Nitrogen Evolution during Coal Pyrolysis Based on a global Free- Radical Mechanism, Energy & Fuels, 14, 1094-1102, 2000.
  • [126] Pershing D.W., Wendt J.O.L., Pulverized Coal Combustion: The influence of flame temperature and coal combustion on thermal and fuel NOx, XVI Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, ss. 386, 1976.
  • [127] Pohl J.H., Sarofim A.F., Devolatilization and Oxidation of Coal Nitrogen. XVI Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, ss. 491-501, 1976.
  • [128] Pohl J.H., Sarofim A.F., Fate of Coal Nitrogen during Pyrolysis and Oxidation. Presented at the Stationary Source Combustion Symposium, EPA, 1976.
  • [129] Pollack M., Heitmiiller R.J., Trockenbraunkohle gefeuerte Dampferzeuger, Entwicklungslinien der Energie- und Kraftwerkstechnik, VDI-Bericht 128, 1996.
  • [130] Pugmire R.J., Fletcher T.H., An overview of ACERC research in Fuel characterisation and reaction mechanisms, Energy & Fuels, 7, 700-703, 1993.
  • [131] Radovic L.R., Ph D Disseration, Pennsylvania State University, 1982.
  • [132] Radovic L.R., Walker P.L., Jenkins R.G., Fuel, 62, 209, 1983.
  • [133] Radovic L.R., Walker P.L., Jenkins R.G. J., Catal., 82, 382., 1983.
  • [134] Radovic L.R., Steczko K., Walker P.L., Jenkins R.G., Fuel Process, Technol., 1985.
  • [135] Rodriguez-Mirasol J., Ooms A.C., Pels F., Kapteijn J.A., Combustion and Flame 99, 499, 507, 1994.
  • [136] Rozendaal C.M., Hoogerdoon A., Witkamp J.G., Meyer R., Benneker R.J.M., Laboratory and full scale blending studies, Report KEMA, Joule-Thermie Program, Contr. No JOF3-CT95-0005.
  • [137] Rudiger H., Pyrolysis of solid fossil and biogenic fuels to generate additional fuel for combustion units, Ph.D. Thesis, University of Stuttgart, 1996.
  • [138] Rybak W., Szybkość spalania węgla i materiałów węglowych, Prace Naukowe Instytutu Techniki Cieplnej i Mechaniki Płynów Politechniki Wrocławskiej, seria: Monografie, Wrocław 1993.
  • [139] Rybak W., Zembrzuski M., Smith J.W., Kinetics of combustion of petroleum coke and sub-bituminous coal char: results of ignition and steady-state techniques, XXI Inter. Symp. On Combustion Pitsburgh, 231-237, 1986.
  • [140] Saini A.K., Song C., Shobert H. H., Prepr. Pap. - Am. Chem.Soc., Div. Fuel Chem., 38 (2), 601, 1993.
  • [141] Shinn J.H., Fuel, 63, 1187-1196, 1984.
  • [142] Silver H.F., Frazee W.S., Integrated Two-Stage Coal Liquefaction Studies, EPRI report AP-4193, University of Wyoming, Laramie, WY, s. 460, 1985.
  • [143] Słupek S. Zanieczyszczenie środowiska przez proces spalania paliw ciekłych, Metallurgy and Foundry Engineering, z. 130, 1989.
  • [144] Słupek S., Emisja zanieczyszczeń z procesu spalania paliw ciekłych, Ochrona Powietrza, nr 4, 1991.
  • [145] Słupek S., Szecówka L., Poskart M., Nitrogen Oxides Reduction in Flame of Natural Gas, Proceedings of the Second Mediterranean Combustion Symposium, Sharm El-Sheikh, Egypt, January, 2002.
  • [146] Słupek S., Szecówka L., Effect of Pulsation Disturbance in Flame Reburning Zone on NOx Emission Reduction, Proceedings of the 6lh Asia-Pacific International Symposium on Combustion and Energy Utilization, Kuala Lumpur, Malaysia, May 2002.
  • [147] Smith S.E., Neavel R.C., Hippo E.J., Miller R.N., DTGA combustion of coal in the Exxon coal library, 458^162, 1981.
  • [148] Smoot L.D., Hill S.C., Xu H., NOx control through reburning, Prog. Energy Comb. Sci., vol. 24, s. 385-408, 1998.
  • [149] Smoot L.D., Smith P.J., Coal Combustion and gasification, Plenum Press, New York, 1985.
  • [150] Soete G.G., 15th Symposium (International) on Combustion, The Combustion Institute, s. 1093, 1975.
  • [151] Solomon P.R., Colket M.B., Fuel, 57, 749-755, 1978.
  • [152] Solomon P.R., Fletcher T.H., XXV Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, ss. 463-474, 1994.
  • [153] Solomon PR., Fletcher T.H., Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, s. 463, 1994.
  • [154] Song C., Saini A.K., Schobert H.H., Effects of drying and oxidation of Wyodak subbituminous Coal on its thermal and catalytic liqueafaction, Energy & Fuels, 8, 301, 1994.
  • [155] Song V., Pohl J., Beer J.M., Sarofim A., Combustion Sei. Technol., 28, 31-39, 1982.
  • [156] Song Y.H, Pohl J.H., Beer J.M., Sarofim A.E., Combust. Sei. Technol., 28, 31, 1982.
  • [157] Spliethoff H., Greul U., Rudiger H., Hein K., Basic effects on NOx emissions in air staging and reburning at blench-scale test facility, Fuel, vol. 75, no. 5, 1996.
  • [158] Spliethoff H., Greul U., Rüdiger H„ Hein K.L.G., Fuel, 75 (5), 560-565, 1996.
  • [159] Spliethoff H., Maier J., Hocquel M., Kluger F., Hein K.R.G., König J., Derichs W., Meschgbiz A., Effect of Pre-drying on Combustion Behaviour and Boiler Design, Workshop Proceedings Power Generation Units with High Efficiency, Wroclaw Poland, 9.1-9.19, 1999.
  • [160] Stańczyk K., Nitrogen Oxide Evolution from Nitrogen - Containing Model Chars Combustion, Energy & Fuels, 13, 82-87, 1999.
  • [161] Straus K., Berger S., Bergins C., Bielfeldt F.B., Erken M., Hoffman M., Mechanish/Thermishe Entwässerung als Vortrocknunggsstufe fur braunkohlegefurte, Kraftwerke, VDI-Berichte, 1280, 165-73, 1996.
  • [162] Straus K., Bergins C., Bohlmann M., Beneficial effect of the integration ad a MTE plant into brown coal power station, Proceedings of the VGB/EPRI Conference. Lignites and low rank coals, operational and environmental issues in a competitive climate, ss. 213-223, 2001.
  • [163] Straus K., Method and device for redcing the water content of water containg brown coal, Patent EP 0 784 660 Bl, 1996.
  • [164] Straus K., Verfahren und Vorriichtung zur Reduzirung des Wasser gehaltes von kohlenstoffhaltin-gen Feststoffmaterialen, Patentschrift DE 44 34 447 Al, 1994.
  • [165] Takagi T., Tasumi T., Ogasawara M., Combustion and Flame, 35, 17-25, 1979.
  • [166] Tillmann D.A., The Combustion of solid fuel and wasters, Academic Press, 1991.
  • [167] Van der Lans R.P., Glarborg P., Dam-Johansen K., Influence of processparameters on nitrogen oxide formation in puherized coal burners, Próg. Energy Combust. Sci., vol. 23, ss. 349-377, 1997.
  • [168] VanKrevelen D.W., Coal: Typology- Chemistiy-Physics- Constitution, Elsevier, Amsterdam 1981.
  • [169] Visona S.P., Stanmore B.R., Combustion and Flame, 105:92, 1996.
  • [170] Vorres K.S., Wertz D.L., Malhotra V., Dang Y„ Joseph J.T., FisherR., Fuel, 71, 1047, 1992.
  • [171] Vorres K.S., Effect of temperaturę, Sample Size, and gas Flow ratę on Drying on Beulah - Zap Lignite and Wyodak Subbituminous Coal, Energy & Fuels, 8, 320-323, 1994.
  • [172] Walker P.L., Matsumoto S., Hanzawa T., Muira T., Ismail I.M.K., Fuel, 62, 140, 1983.
  • [173] Wallace S„ Bartle K.D., Perry D.L., Fuel, 68, 1450-1455, 1989.
  • [174] Wang W., Brown S„ Hindmarsch C.H., Thomas K.M., Fuel, 73 (9), 1381-1388, 1994.
  • [175] Weber R., Reduction of NOx with puherized coal firing from development and testing at semi- industrial scalę to finał industrial application of Iow NOx burners. Meeting Polish Power Grid Company 11-12 June, 1992.
  • [176] Wendt J.O.L., Stemling C.V., Matovich M.A., Proc. Combust. Inst., 14, 897, 1973.
  • [177] Wendt J.O.L, Pershing D.W., Combustion Science and Technology, 16:111, 1977.
  • [178] Wendt J.O.L., Pershing D.W., Combust. Sci. Technol., 16, 111-121, 1977.
  • [179] Wendt J.O.L., Progr. Energy Combust. Sci., 6, 201-222, 1980.
  • [180] Wendt J.O.L. and Mereb J.B., Reburning Mechanisms in a Pulverized Coal Combustor, XXIII Symposium (International) on Combustion, The Combustion Institute, ss. 1273-1279, 1990.
  • [181] Wendt J.O.L. and Mereb J.B., Nitrogen Oxide Abatement by Distributed Fuel Addition, Report to DOE, Contract No. AC22-87PC79850, 1991.
  • [182] Wendt J.O.L., Mereb J.B., Nitrogen Oxide Abatement by Distributed Fuel Addition, Report to DOE, Contract No. AC22-87PC79850, 1991.
  • [183] Wendt J.O.L., NOx formation and destruction mechanisms in pulverized coal combustors, Fluid Utilization and Environment, Intensive Course, Prague 1991.
  • [184] Wendt J.O.L., Mechanisms Governing the Formation and destruction of NOx and Other Nitrogenous species in Coal Combustion Systems, Lecture presented at Workshop on reduction of Pollutant emissions from Combustion Processes, Katowice Poland, December 13, 1994.
  • [185] Wiliams A., Pourkashanian M., Jones J.M., Rowland S., A review of NOx formation and reduction Mechanisms in Combustion Systems with particular Reference to Coal, Combustion & Emissions Control III, The Institute of Energy, 1998.
  • [186] Wilk R.K., Podstawy niskoemisyjnego spalania, Wydawnictwo Gnome, Katowice, 2000.
  • [187] WojtowiczM.A., Pels J.R., Moulijn J. A. (1993b), The fate of nitrogen funcionalities in coal during pyrolysis and combustion, Paper presented to: Coal utilization and the environment Conference. Orlando, FL, USA, 17-20 May, 1993.
  • [188] Wu Z., Ohtsuka Y., Energy & Fuels, 11, ss. 447-482, 1997.
  • [189] Zamansky V.M., Folsom B.A., Seeker W.R., Advanced biomass reburning for high efficiency NOx control, Bioenergy '96, The Seventh National Bioenergy Conference, ss. 898-904, 1996.
  • [190] Zevenhoven R., Hupa M., The reactivity of chars from coal, peat and wood towards NO, with and without CO, Fuel, 77,11, ss. 1169-1176, 1998.
  • [191] Zolin A. et. al., A comparative classification of coal reactivity, Proceedings ICCS '97, edited by A. Ziegler et. al., DGMK Tagungsberichte 9703, 1997.
  • [192] Zolin A. et. al., A comparison of coal char reactivity determined from thermogravimetric and laminar flow reactor experiments, Energy & Fuels, 12 (2), 268-276, 1998.
  • [193] Zongbin Zhao, Jieshan Qiu, Wen Li, Haokan Chen, Baoqing Li, Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion, Fuel, 82, 949-957, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0016-0084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.