PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rury cieplne w inżynierii środowiska

Autorzy
Identyfikatory
Warianty tytułu
EN
Heat pipes in the environmental engineering
Języki publikacji
PL
Abstrakty
PL
Przedstawiono możliwości wykorzystania rur cieplnych, wydajnych urządzeń do przekazywania ciepła, w inżynierii środowiska. Omówiono wyniki badań eksperymentalnych procesów wymiany ciepła podczas wrzenia i kondensacji w rurach cieplnych. Badano rury cieplne z czterema rodzajami struktur kapilarnych: spiekane, metalowe włókna, siatki metalowe, rowki wzdłużne oraz rowki z siatkami. Dla struktury kapilarnej w postaci spiekanych włókien opracowano równania empiryczne służące do wyznaczania wartości współczynników wnikania ciepła podczas wrzenia i kondensacji cieczy. Jako cieczy roboczych użyto wody, metanolu i etanolu, które mogą być używane w urządzeniach stosowanych w inżynierii środowiska. Przedstawiono również wyniki badań wymiennika ciepła zbudowanego z dwufazowych zamkniętych termosyfonöw. Badania te posłużyły do weryfikacji modelu wymiennika ciepła. Na podstawie zaproponowanego modelu opracowano program komputerowy do analizy pracy, doboru i optymalizacji konstrukcji wymienników ciepła zbudowanych z dwufazowych termosyfonów zamkniętych.
EN
Highly effective devices for the heat transfer usage - heat pipes - in the environmental engineering are presented. Experimental results of heat exchange in boiling and condensation processes in the heat pipes were examined. Heat pipes with four different capillary structures were tested: longitudinal grooves, metal grids, grooves with grids and sintered metal fibres. For the capillary structure based on sintered fibres, the empirical formulas for the convective heat transfer coefficients in liquid boiling and condensation were developed. As the working fluid water, methanol and ethanol were chosen as the agents which could be applied in the installations used in the environmental engineering. The results of examination of the heat exchanger made of two-phase closed thermosyphons are also presented. The tests were done in order to verify the model of the heat exchanger. On the basis of the model proposed, a computer program for optimization of to work and selection, analysis and to construction optimization of the heat exchangers made of two-phase closed thermosyphons and heat pipes was created.
Twórcy
  • Katedra Klimatyzacji i Ciepłownictwa Wydziału Inżynierii Środowiska Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław.
Bibliografia
  • [1] Akachi H., Polasek F., Pulsating Heat Pipes - a New Challenge in Heat Pipe Technology, Proc. XInt. Heat Pipe Conf., Albuquerque,1995.
  • [2] Andros F.E. Heat Transfer Characteristics of the Two-phase Closed Thermosyphon (Wickless Heat Pipe) Including Direct Flow Observations, Ph.D. Thesis, Arizona State University, Tempe/USA,1980.
  • [3] Atkins D. R. et al„ Development of a 75-kW Heat-Pipe Receiver for Solar Heat-Engines, Advances in Heat Pipe Science and Technology, Proceedings of the IX International Heat Pipe Conference, May 1-5, 1995, Albuquerque, New Mexico.
  • [4] Benson D.A., Mitchell R.T., Tuck M.R., Adkins D.R., Palmer D.W., Micro-Machined Heat Pipes in Silicon MCM Substrates, Proc. IEEE Multi-Chip Module Conf., Santa Cruz, 1995.
  • [5] Bohdal T. i in., Wrzenie perspektywicznych czynników w parownikach chłodniczych, Politechnika Koszalińska, Koszalin, 1999.
  • [6] Brodowicz K., Teoria wymienników ciepła i masy, PWN, Warszawa, 1982.
  • [7] Brost O., Mack H., Wierse M., Heat Pipe Technology. A Technology to Improve Solar-Thermal Power Systems. Advances in Heat Pipe Science and Technology, Proceedings of the 8lh International Heat Pipe Conference, September 14-18, 1992, Beijing, China.
  • [8] Camrada C.J., Rummler D.R., Peterson G.P., Mult i Heat Pipes Panels, NASA Tech. Briefs, LAR- 14150, 1991.
  • [9] Chi, S.W., Heat Pipe Theory and Practice. A Source Book, Hemisphere Publishing Corporation, New York, 1976.
  • [10] Cieśliński J.T., Studium wrzenia pęcherzykowego na metalicznych powierzchniach porowatych, Wydawnictwo Politechniki Gdańskiej, Zeszyty Naukowe Politechniki Gdańskiej, Nr 547, Mechanika LXXVI, 1996.
  • [11] Cotter T.P., Theory of Heat Pipes, Los Alamos Sci., Report No. LA-3246-MS, 1965.
  • [12] Cotter T.P., Principles and Prospects of Micro-Heat Pipes, Proc.5'h Int. Heat Pipe Conf., Tsukuba, Japan, 1984.
  • [13] Danielewicz J., Miniewicz M., Ruszel F., Tomczak W„ Experimental Study of Heat Recovery System by Two-Phase Closed Thermosyphon, Poszanowanie energii w ogrzewnictwie, wentylacji i klimatyzacji, VII Międzynarodowa konferencja, Pol. Wrocl., Katedra Klimatyzacji i Ciepłownictwa, Wydział Inżynierii Środowiska, PAN, Sekcja Ogrzewnictwa i Wentylacji Komitetu Inżynierii Lądowej i Wodnej, PZ1TS Oddział Dolnośląski, Wrocław, Szklarska Poręba, 28-30. 05. 1995, Wrocław.
  • [14] Danielewicz J., Wykorzystanie efektu heat pipe (rury cieplnej) w konstrukcjach kolektorów słonecznych. Wykorzystanie energii odnawialnej w rolnictwie. Seminarium krajowe, Referaty i komunikaty, IBMER, Warszawa, 24 i 25 V 1994.
  • [15] Danielewicz J., Miniewicz M., Ruszel F., Tomczak W., Grawitacyjne rury cieplne w układach chłodzenia stacji transformatorowych, Wiad. Elektrot., 1992, 50 (3).
  • [16] Danielewicz J., Wymienniki ciepła z dwufazowych zamkniętych termosyfonów w inżynierii środowiska, [w:] Problemy inżynierii środowiska u progu nowego tysiąclecia, międzynarodowa konferencja, Wrocław-Szklarska Poręba, 5-7 X 2000, Wroclaw, Oficyna Wydawnicza Politechniki Wrocławskiej, 2000.
  • [17] Danielewicz J., Nowak B., Sayegh M.A., Two-Phase Thertnosyphon Solar Colector Absorber Advances in Heat Pipe Science Technology, Proceedings of the IX International Heat Pipe Conference, May 1-5, 1995, Albuquerque, New Mexico.
  • [18] Danielewicz J., Tomczak W., Mazurkiewicz W., Dobór rekuperatorów z rur cieplnych w instalacjach odzyskiwania ciepła, Ciepłownictwo, 1990. 22 (4/5).
  • [19] Danielewicz J., Tomczak W. Conventional Thermosyphon Versus Heat Pipe, Sixth International Heat Pipe Conference, Heat Trans. Serv. French Atom. Energy Commiss. in the Grenoble Nucl. Res. Cent., Grenoble, France, May 25-29, 1987.
  • [20] Danielewicz J., Mazurkiewicz W., Kajl S., Performance of Recuperator with Heat Pipes, an Analysis, Sixth International Heat Pipe Conference. Heat Trans. Serv. French Atom. Energy Commiss. In the Grenoble Nucl. Res. Cent., Grenoble, France, May 25-29, 1987.
  • [21] Danielewicz J., Two-phase closed thermosyphon heat exchanger for heat recovery in HVAC systems. Heat Pipe Science and Technology, Proceedings of the 1 l'h International Heat Pipe Conference, September 12-16, 1999, Tokyo, Japan, 2001.
  • [22] Dunn P.D., Reay D.A., Heat Pipes, Pergamon Press, 1976.
  • [23] El-Genk M.S., Saber H., Heat Transfer in the Evaporator of Closed Two-Phase Thermosyphons. Heat Pipe Science and Technology, Proceedings of the 1 llh International Heat Pipe Conference, September 12-16, 1999, Tokyo, Japan, 2001.
  • [24] Fukano T. i in., Experimental Study on the Heat Flux at the Operating Limit of a Closed Two-Phase Thermosyphon, Trans. ISME Ser. B„ 1987.
  • [25] Gross U., Reflux Condensation Heat Transfer Inside a Closed Thertnosyphon, Int. J. Heat and Mass Transfer, 35, 2, 1992.
  • [26] Gross U., Falling Film Evaporation Inside a Closed Thermosyphon. Advances in Heat Pipe Science and Technology, Proceedings of the 8lh International Heat Pipe Conference, September 14-18, 1992, Beijing, China.
  • [27] Heat Pipes Prospectus of Energy. Conversion Systems, Albuquerque, USA, 1995.
  • [28] Heine D., Groll M., Compability of Origanic Fluids with Commercial Structual Materials for Use in Heat Pipe, Proceedings of the 5lh Int. Heat Pipes Conference, 1984.
  • [29] Heyness F.D., Zarling J.P., Thermosyphon for Permafrost Stabilization. Advances in Heal Pipe Science Technology, Proceedings of the IX International Heat Pipe Conference, May 1-5, 1995, Albuquerque, New Mexico.
  • [30] Hobler T., Ruch ciepła i wymienniki, WNT, Warszawa, 1979.
  • [31] Honda i in., Heat Exchangers with Naphtalene as Working Fluids, Proceedings of the 8lh International Heat Pipe Conference, September 14-18, 1992, Beijing, China.
  • [32] Huang B.J., Tsuei J.T., A Method of Analysis for Heat Pipe Heat Exchangers, Int. Journal of Heat Mass Transfer, Vol. 28, Pergamon Press, 1985.
  • [33] Ikeda Y., The Permeability of a Screen Wick, Proceedings of the 6lh International heat Pipe Conference, Grenoble, France, 1987.
  • [34] Imura H. i in., Heat Transfer in Two-Phase Closed Type Thermosyphons, Heat Transfer Japanese Research, Vol.8, Nr 2, 1979.
  • [35] Imura H. i in., Experimental Investigation of Critical Heat Fluxes in Two-Phase Closed Thermosyphons, Preprints of 10lh International Heat Pipe Conference, Stuttgart, September 21-25, 1997, Germany.
  • [36] Imura H. i in., Critical Heat Flux in a Closed Two-phase Thermosyphon, International Journal Heat and Mass Transfer, 26, 8, 1983.
  • [37] Imura H. i in.. The Effective Pore Radius of Screen Wicks. Advances in Heat Pipe Science and Technology, Proceedings of the 8'h International Heat Pipe Conference, September 14-18, 1992, Beijing, China.
  • [38] Imura H. i in., The Visual Observation of the Flow Patterns in Two-Phase Single and Double-Tube
  • Thermo syphons. Advances in Heat Pipe Science and Technology, Proceedings of the 8lh International Heat Pipe Conference, September 14-18, 1992, Beijing, China.
  • [39] Iwanowski I., Technologiczeskije osnowy teplowych tryb, Moskwa, Atomizdat, 1980.
  • [40] Kaminga F., Okamoto Y., Suzuki T., Study on Boiling Heat Transfer Correlation in Closed Two-Phase Thermosyphon. Advances in Heat Pipe Science and Technology, Proceedings of the 8lh International Heat Pipe Conference, September 14-18, 1992, Beijing, China.
  • [41] Kaminga F. i in., Heat Transfer Characteristics of Evaporation and Condensation in Two-Phase Closed Thermosyphon, Proceedings of 10lh Int.Heat Pipe Conference, September 21-25, 1997, Sttutgart, Germany.
  • [42] Katalog firmy Aerospatial, Francja, 1996.
  • [43] Katalog Hudson Products Corporation, USA, 1992.
  • [44] Katalog firmy Fujikura, Japonia, 1994.
  • [45] Katto Y., Generalized Correlation for Critical Heat Flux of Natural Convection Boiling in Confined Channels, Trans, of ISME, Ser. 2. 44-387, 1987.
  • [46] Kutateladzes S., Osnowy teorii tiepłoobmiena, Atomizdat, 1979.
  • [47] Kutepow A.M., Sterman Ł.S., Stiuszyn N.G., Gidrodinamika i tieploobmien pri paroobrazowanii. Wyższa Szkoła, 1977.
  • [48] Lee Y., Bedrosjan A. The Characteristic of Heat Exchangers Using Heal Pipes or Thermosyphons, Int. Journal of Heat Mass Transfer, Vol. 21, Pergamon Press, 1978.
  • [49] Lee Y. i in., Efect of Conjugation on Critical Heat Flux of Two-Phase Closed Thermosyphons Proc. 10lh Int. Heat Pipe Conference, Vol. 6, 1994, Brighton, UK.
  • [50] Liu C.Y. i in., Note on the Method of Analysis for Heat Pipe Heat Exchanger, Int. Journal of Heat Mass Transfer, Vol. 33, Pergamon Press, 1990.
  • [51] Longtin J.P., Badran B., Gerner F.M., A One Dimensional Model of Micro Heat Pipe during Steady-State Operastion, Proc.of 8lh Int. Heat Pipe Conference, Beijing, China, 1992.
  • [52] Maezawa S., CPU Cooling of Notebook PC by Oscillating Heat Pipe, Heat Pipe Science and Technology, Proceedings of the 1 l'h International Heat Pipe Conference, September 12-16, 1999, Tokyo, Japan, 2001.
  • [53] Maezawa S., Heat Pipe Activity in Japan. Advances in Heat Pipe Technology, 9lh Int. Heat Pipe Conference, 1995, Albequerque, USA.
  • [54] Madejski J. Teoria wymiany ciepła, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin,1998.
  • [55] Michalewicz A.A., Matematiczeskoje modelirowanije masso- i tieplopierenosa pri kondensacji. Nauka i Technika, Minsk, 1982.
  • [56] Ming D.H. i in., Experiment of Heal Transfer Performance for Steel-Naphtalen Gravity, Heat Pipe with Small Inclination Angle, 9lh Int. Heat Pipe Conference, 1996, Albequerque, USA.
  • [57] Mikielewicz J., Modelowanie procesów cieplno-przepływowych, Polska Akademia Nauk, Instytut Maszyn Przepływowych, Maszyny przepływowe, t. 17, Ossolineum, 1995.
  • [58] Mikielewicz J. i in., A General Correlation for Saturated Freon Flow Boiling in a Horizontal Tube. Recent Advances in Heat Transfer, B. Sundden and A Żukauskas (Eds.), 1992. Elsevier, Amsterdam, 190-203.
  • [59] Miyasita T. i in., Procedings 28lh National Heat Transfer Symposium of Japan, B243, 1991, 469.
  • [60] Mracek P., Application of Micro Heat Pipes to Laser Diode Cooling, Annual Report of the VUMS, Praque, Czechoslovakia, 1988.
  • [61] Muncel W.D. Compability Test of Various Heat Pipe Working Fluids and Structure Materials at Different Temperature, Proc. of the 3rd Intern. Heat Pipe Conference, Pal Alto, 1978.
  • [62] Nishio S., Oscillatory-Flow Heat Transport Device (Force Oscillatory Flow Type and Buble Driven Type), Heat Pipe Science and Technology, Proceedings of the 1 llh International Heat Pipe Conference, September 12-16, 1999, Tokyo, Japan, 2001.
  • [63] Peterson G.P., Heat Pipes in the Thermal Control of Electronic Components, Proc. 3rd International Heat Pipe Symposium, Tsukuba, Japan, September 12-14, 1988.
  • [64] Peterson, G.P., An Introduction To Heat Pipes. Modeling, Testing and Applications, A.D. Kraus and A. Bar-Cohen (Eds.), Wiley, 1994.
  • [65] Pietrowski J.W., Fastowski W.G., Współczesne wysokosprawne wymienniki ciepła, WNT, Warszawa, 1964.
  • [66] Prisnakow W.F. Kipienije, Naukowa Dumka, 1988.
  • [67] Polasek F., Zelko M., Thermal Control of Electronic Components by Heat Pipes and Thermosy-phons, 10th Int. Heat Pipe Conference, Stuttgart, 1997.
  • [68] Polasek F., Zelko M., Thermal Control of Electronic Components by Heat Pipes and Thermosy phons, Heat Pipe Science and Technology, Proceedings of the 1 llh International Heat Pipe Conference, September 12-16, 1999, Tokyo, Japan, 2001.
  • [69] Rosenfeld J.H., Lindemuth J.E. Heat Transfer in Sintered Groove Heat Pipes. Heat Pipe Science and Technology, Proceedings of the ll'h International Heat Pipe Conference, September 12-16, 1999, Tokyo, Japan, 2001.
  • [70] Rosenfeld J.H.. Nucleate Boiling Heat Transfer in Porous Structure, ASME HTD, Vol. 18, Heat Transfer Fundamentals, Design, Applications and Operating Problems, R.H. Shah, (Ed.), 47, 1989.
  • [71] Rosenfeld J.H. i in., Internally Extended Surface Heat Pipe Evaporators for Microelektronics Cooling, ASME HTD. Vol. 273, Fundamentals of Phase Change. Boiling and Condensation, 93, 1994.
  • [72] Sayegh A.M., Tomczak W., Danielewicz J., Experimental Study on the Possibility of Dropwise Condensation Heat Transfer in Two-Pliase Closed Thermosyphon. Advances in Heat Pipe Science and Technology, Proceedings of the 8lh International Heat Pipe Conference, September 14-18,1992, Beijing, China.
  • [73] Sayegh M., Danielewicz J.„ Nowak B., Comparison Between Theoretical Analyses and Experimental Results of Two-Phase Closed Thermosyphons Solar Collector, Eurosun 96, X Internationales Sonnenforum. Proceedings, A. Goetzberger, J. Luther (Eds.), Freiburg, 16-19 September, 1996, Vol. 1, Munchen, DGS-Sonnenenergie.
  • [74] Sayegh M. A., Danielewicz J. Performance of an Experimental Solar Collector Water Heater. Results and Notes, Proceedings of the Second International Symposium on Renewable Energy Education, K. Blum and L.Broman (Eds.), IAS EE, ISES, Oldenburg, Germany, 10-11 June, 1992.
  • [75] Sayegh M. A., Danielewicz J., Experimental Measurements of Solar Water Heater in the Climatic Conditions of Poland. Renewable Energy Technology and the Environment, Proceedings of the 2nd World Renewable Energy Congress, A.A. Sayigh (Ed.), World Renewable Energy Company, Reading, UK, 13-18 September, 1992. Vol. 2., Oxford, Pergamon Press.
  • [76] Sayegh M. A., Danielewicz J., Testowanie słonecznego podgrzewacza wody z dwufazowymi zamkniętymi termosyfonami, Ciepłownictwo, 1992, 24, Nr 3.
  • [77] Semena M.G., Gershuny A.N., Zapirow W.N., The Heat Pipes with Fiber-Metal Capillary Structure, Kiev, High School, 1984.
  • [78] Shapoval A.A., Kostornov A.G., Influence of the Characteristic Capabilities of Fibrous Metal Capillary Structures on Heat Transfer in Boiling Water and Acetone, Preprints of Proceedings of the 1 llh International Heat Pipe Conference, September 12-16, 1999, Tokyo, Japan.
  • [79] Shah M.M., A New Correlation for Heat Transfer during Boiling Flow Through Pipes, ASHRAE Trans., 1976. Vol.82. II.
  • [80] Shekriladze I.G., Evaporation and Condensation on Capillary Surfaces. Achievements and Unsolved Problems. Heat Pipe Science and Technology, Proceedings of the lllh International Heat Pipe Conference, September 12-16, 1999, Tokyo, Japan, 2001.
  • [81] Shimei S., Hong Z., Jun Z., Study of Internal Enhanced Boiling Heat Transfer Mechanism of Concentric Perforated Pipe in Thermosyphon, Preprints, 10lh International Heat Pipe Conference, Stuttgart, September 21-25, 1997, Germany.
  • [82] Stephan K., Abdelsalam M.. Heat-Transfer Correlations for Natural Convection Boiling, International Journal Heat and Mass Transfer, Vol. 23, 73, 1980.
  • [83] Tien C.L., Chung K.S., Entrapment Limits in Heal Pipes, AIAA J., 17-6, 1979.
  • [84] Tomczak W., Danielewicz J. i in., Wyniki pomiarów termowodowego rekuperatora lornetowanego i opracowanie typoszeregu. Raport 1-13, SPR 34/87, Politechnika Wrocławska.
  • [85] Troniewski L. Metoda obliczania procesów odparowania w rurach w obszarze konwekcyjnym. Zeszyty Naukowe WSI Opole, Nr 35, Mechanika, Z. 9., Opole, 1977.
  • [86] Ueda T. i in.. Transactions of JSME, Ser. B. 54, 1988, 506, 2048.
  • [87] Ueda T., Miyashita T., On the Performance Limit of Closed Two-Phase Thermosyphons, Trans. JSME. Ser. B., 1990.
  • [88] Wallis G.B., Flooding Velocities for Air and Water in Vertical Tubes, AEEW-R123, 1961.
  • [89] Vasiliew L.L.. i in., Poristyje materiały w kriogennoj technikie, Minsk, Nauka i Technika, 1979.
  • [90] Vasiliev L.L. i in., Intensyfikacja tieploobmiena w tiepłowych trubach, Minsk, Nauka i Technika, 1993.
  • [91] Xin, M. i in., 6lh International Heat Pipe conference, 1987, Grenoble.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0015-0105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.