PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Computer simulation of modulated two-beam interference using monochromatic light

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two different models are suggested to describe the fringe shift obtained from the two beam interference modulated by the phase variations of transparent objects. The first model of the fringe shift assumes a linear triangular distribution, while the second model varies as a truncated Gauss function. The Abel transform enables computation of the refractive index distribution from the theoretical data of the fringe shift. The fringe shift of the phase object is represented in the harmonic term of the intensity distribution formula. A computer program is written to plot both of the fringe shifts of the models described and the corresponding refractive indices of the phase object. Comparative results are cited in the introduction which are based on an algebraic reconstruction technique (ART) using two models; one of them has a cosine phantom field which constructs an asymmetric single peak, while the other model has cosGauss function giving an asymmetric double-peak phantom. These results are compared with our results, which gives only a single peak in both cases of linear and quadratic variations, which is convenient for use in optical fibers.
Czasopismo
Rocznik
Strony
51--61
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
Bibliografia
  • [1] KOPF U., Opt. Commun. 5 (1972), 347.
  • [2] SHU J.Z., LI I.Y., J. Flow Visual Image Process. 1 (1993), 63.
  • [3] MERZKIRCH W., Exp. Therm. Fluid Sci. 10 (1995), 435.
  • [4] KIHM K.D., Exp. Fluids 17 (1994), 246.
  • [5] WALSH T.E., KIHM K.D., J. Flow Visual. Image Process. 2 (1995), 299.
  • [6] Merzkirch W., Density – sensitive whole – field flow measurement by optical speckle photography, Proc. Int. Conf. Exp. Heat Transfer, Fluid Mech. Thermodyn. 3rd, Honolulu, Hawaii, (1993) pp. 1–11.
  • [7] LIU T.C., MERZKIRCH W., OBERSTE-LEHNE K., Exp. Fluids 7 (1989), 157.
  • [8] ERBECK R., MERZKIRCH M., Exp. Fluids 6 (1988), 89.
  • [9] MICHAEL Y.C., Three-dimensional temperature reconstruction using Mach–Zehnder interferometrictomography, Ph. D. Thesis, Department of Aerospace and Mechanical Engineering, University ofNotre Dame, South Bend, USA, 1991.
  • [10] BARAKAT N., EL-GHANDOOR H., HAMED A.M., DIAB S., Exp. Fluids 16 (1993), 42.
  • [11] LIRA I.H., Meas. Sci. Technol. 5 (1994), 226.
  • [12] RADULOVIC P.T., Holographic interferometry of three-dimensional temperature of density fields, Ph. D. Thesis, Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, USA, 1977.
  • [13] FOMIN N.A., Inzh.-Fiz. Zh. 56 (1989), 540.
  • [14] BLINKHIN G.N., FOMIN N.A., ROLIN M.N., SOLOUKHIN R.L., VITKIN D.E. YADREVSKAYA N.L., Exp. Fluids 8 (1989), 72.
  • [15] FUKANO T., YAMAGUCHI I., Opt. Lett. 21 (1996), 1942.
  • [16] CANNING A.L., CARTER G., SCEATS M.G., J. Lightwave Technol. 15 (1997), 1348.
  • [17] FLOURNOY P.A., MCCLUE R.W., WYNTJES G., Appl. Opt. 11 (1972), 1907.
  • [18] BUTTERS J.N., LEENDERTZ J.N., J. Phys. E4 (1971), 277.
  • [19] BRACEWELL R.N., The Fourier Transform And Its Applications, McGraw-Hill Co., New York 1978, p. 261.
  • [20] VEST C.V., Holographic Interferometry, Wiley, New York 1979.
  • [21] SHU J.Z., LI J.Y., J. Flow Visualization Image Processing 1 (1993), 63.
  • [22] WERNEKINCK U., MERZKIRCH W., FOMIN N.A., Exp. Fluids 3 (1985), 206.
  • [23] VONBALLY G., Holography in medicine and biology, Proceedings of the International workshop, Munster, Fed.Rep. Germany (1979) p. 124.
  • [24] WALSH T.E., KIHM K.D., Tomographic deconvolution of laser speckle photography applied for flame temperature measurement, Proc. Int. Symp. Flow Visual. 7th Seattle, 1995, pp. 898–903.
  • [25] WALSH T.E., A comparative study of laser speckle photography and laser interferometry for optical tomography, Ph. D. Thesis, Department of Mechanical Engineering, Texas A&M University, College station, TX, USA, 1996.
  • [26] HOUWING A.F.P., TAKAYAMA K., KOREMOTO K., HASHIMOTO T., FALETIC R., GASTON M., Interferometric measurement of an axi-symmetric density field, 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne, Australia, 9–10 Dec., 1999, pp. 111–116.
  • [27] TAKAYAMA K., Proc. Soc. Photo-Opt. Instrum. Eng. 398 (1983), 171.
  • [28] KIHM K.D., Opt. Lasers Eng. 29 (1998), 171.
  • [29] TASSHI D., ERIN M. GILL, SARAH L.G., Appl. Opt. 40 (2001), 1663.
  • [30] SHAKHER C, NIRALA A.K., Optik 97 (1994), 43.
  • [31] LIU T.C., MERZKIRCH M., OBERSTE-LEHAN K., Exp. Fluids 7 (1989), 157.
  • [32] GORDON R., IEEE Trans. NS-21 (1974), 78.
  • [33] VERHOEVEN D., Appl. Opt. 32 (1993), 3736.
  • [34] KO H.S., KIHM K.D., Exp. Fluids 27 (1999), 542.
  • [35] LIPSON S.G., LIPSON H., TANNHAUSER D.S., Optical Physics, 3rd ed., Cambridge 1996, p. 222.
  • [36] CHAPRA S.C., CANALE R.P., Introduction to Computing for Engineers, Mc-Graw Hill Co. (1986), p. 496.
  • [37] HAMED A.M., Opt. Appl. 13 (1983), 205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0015-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.