PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numeryczna symulacja turbulentnego przepływu gazu przez wypełnienia o zadanej geometrii

Autorzy
Identyfikatory
Warianty tytułu
EN
Numerical simulation of air turbulent flow through the model packings
Języki publikacji
PL
Abstrakty
PL
Numeryczną symulację turbulentnego przepływu powietrza przez modelowe wypełnienia wykonano za pomocą licencyjnego oprogramowania CFD "Fluent". Zbadano, jak geometria elementów wypełnienia i warunki hydrodynamiczne wpływają na wartość oporu hydrodynamicznego badanych układów. Wynik teoretycznych przewidywań porównano z danymi doświadczalnymi uzyskanymi w tych samych warunkach.
EN
The numerical simulation of air turbulent flow within the model packing has been performed with the use of the "Fluent" CFD software. The influence of the packing geometry and hydrodynamic conditions on packing hydrodynamic resistance was determined. The theoretical results were compared with the experimental data obtained under the same conditions.
Rocznik
Strony
431--442
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Instytut Chemii Fizycznej Polskiej Akademii Nauk, Warszawa
Bibliografia
  • [1] ZIOLKOWSKA I., Z16LKOWSKID., Fluid Flow Inside Packed Beds, Chem. Eng. Proc., 23, 137, 1988.
  • [2] Liu, S., MASLIYAH J.H., Single fluid flow in porous media, Chem. Eng. Comm., 150, 653, 1996.
  • [3] BRUNAZZl E., PAGUANTI A., Mechanistic Pressure Drop Model for Columns Containing Structured Packings, AIChE J., 43 (2), 317, 1997.
  • [4] MAURET E., RENAUD M., Transport phenomena in multi-particle systems, I, II, Chem. Eng. Sci., 52 (11), 1819, 1997.
  • [5] EPSTEIN N., Comments on transport phenomena in multi-particle systems, Chem. Eng. Sci., 52 (7), 1469, 1998.
  • [6] PANDIT A.B., Josm J.B., Pressure drop in fixed, expanded and fluidized beds, packed columns and static mixers -a unified approach. Rev. Chem. Eng., 14 (4, 5), 321, 1998.
  • [7] WANG X. et al., Non-Darcy flow through anisotropic porous media, Chem. Eng. Sci., 54 (12), 1859, 1999.
  • [8] ILIUTA I. et al, Pressure Drop and Liquid Hold-up in Trickle Flow Reactors: Improved Ergun Constants, Ind. Eng. Chem. Res, 37, 4542, 1998).
  • [9] BEY O., EIGENBERGER G., Fluid flow through catalyst filled tubes, Chem. Eng. Sci., 52 (8), 1365,1997.
  • [10] LATIFI M.A. et al., Velocity gradient at the wall of a packed bed reactor with single phase liquid flow:measurements and modelling, Chem. Eng. Proc., 36, 251, 1997.
  • [11] CHENG Z.M., YUAN W.K., Estimating Radial Velocity of Fixed Beds with Low Tube-to-Particle Diameter Ratios, AIChE J., 43 (5), 1319, 1997.
  • [12] MOISE A., TUDOSE R.Z., Air isothermal flow through packed beds, Exp. Thermal and Fluid Sci., 18, 134,1998.
  • [13] GIESE, M. et al., Measured and Modelled Superficial Flow Profiles in Packed Beds with Liquid Flow, AIChE J., 44 (2), 484, 1998.
  • [14] SUBAGYO et al., A new model of velocity distribution of a single-phase fluid flowing in packed beds, Chem. Eng. Sci., 53 (7), 1375, 1998.
  • [15] SONG M. et al., A Three-Dimensional Model for Simulating The Maldistribution of Liquid Flow in Random Packed Beds, Can. J. Chem. Eng., 76, 161, 1998.
  • [16] QUINTARD M., WHITAKER S., Transport in ordered and disordered porous media III. Closure and Comparison Between Theory and Experiment, Transport in Porous Media, 15, 31, 1994.
  • [17] VAFAI K., KIM S.J., On the limitations of the Brinkman-Forchheimer-extended Darcy equation. Int. J. Heat and Fluid Flow, 16, 12, 1995.
  • [18] NlELD D.A., Closure statements on the Brinkman-Forchheimer-extended Darcy model, Int. J. Heat and Fluid Flow, 17, 34, 1996.
  • [19] MASUOKA T., TAKATSU Y., Turbulence model for flow through porous media, Int. J. Heat Mass Transfer, 39 (13), 2803, 1996.
  • [20] LAGE J.L., NIELD D.A., Comments on Turbulence model for flow through porous media, Int. J. Heat Mass Trans., 40 (10), 2499, 1997. [
  • [21] LOGTENBERG S.A., DIXON A.G., Computational Fluid Dynamics Studies of the Effects of Tempera¬ture, Ind. Eng. Chem. Res., 37,739, 1998.
  • [22] LOGTENBERG S.A., DlXON A.G., Computational fluid dynamics studies of fixed bed heat transfer, Chem. Eng. Proc, 37, 7, 1998.
  • [23] DEBUS K. et al., Numerische Simulation des lokalen Impulsstausches in Kugelsschuttungen, Chem. Eng. Tech., 70,415, 1998.
  • [24] NAKAYAMA A., KUWAHARA F., A macroscopic turbulence model for flow in a porous medium, J. Fluids Engng, Trans ASME, (w druku), 1999.
  • [25] TOBIS J., Experimental investigation of hydrodynamic properties of packed beds, 12th Int. Congress Chem. Proc. Engng, CHISA 96, 1996.
  • [26] TOBIS J., Badania turbulencji gazu przepfywajqcegoprzez zloze stale, Inz. Chem. Proc., 18 (3), 455,1997.
  • [27] WENTZ C.A, THODOS G, Total and Form Drag Friction Factors for the Turbulent Flow of Air Through Packed and Distended Beds of Spheres, AIChE J., 9, 358, 1963.
  • [28] KUWAHARA F. et al., Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array, J. Porous Media 1 (1), 47, 1998.
  • [29] BRANDSHAW P., LAUNDER B.E., LUMLEY J.L., Collaborative Testing of Turbulence Models, J. Fluid Eng., 118,243, 1996. [30] Fluent 5.2. User's Guide, Fluent Inc., Lebanon, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0010-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.