Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
New fields of applications of aerogels in ballistic
Języki publikacji
Abstrakty
The paper presents a literature review considering methods of obtaining the carbon aerogels by polycondensation from resorcinol-formaldehyde (RF) precursor and discuss of research results for RF and crosslinked aerogels. The result of own, preliminary research of soft inserts for bullet- and fragment proof vests are presented. They clearly indicate that use of aerogel is effective and increase the ballistic protection. The article includes also through characterization of ability to absorb impact energy during static and dynamic compression tests as well as the ways to control the size and shape of nanoporous. Structure and porosity of porous materials have a significant impact on their properties.
Wydawca
Rocznik
Tom
Strony
23--28
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab.
Twórcy
autor
- Instytut Technologii Bezpieczeństwa MORATEX w Łodzi
Bibliografia
- 1. Fricke J., Tillotson T: Aerogels: production, characterization and applications, Thin Solid Films 297 (1997); 212 - 223.
- 2. Zhang R., Li W., Li K.: Effect of concentration of reactants on porosity of hydrogels, organic and carbon aerogels, Microporous and Mesoporous Materials 72 (2004); 167 - 173.
- 3. Feng J., Feng Ji., Jiang Y.: Ultralow density carbon aerogels with low thermal conductivity up to 2000 °C, Materials Letters 65 (2011); 3454-3456.
- 4. Zhang X., Liu J., Xu B.: Ultralight conducting polymer/carbon nano-tube composite aerogels, Carbon 49 (2011); 1884 - 1893.
- 5. Gupta N., Ricci W.: Processing and compressive properties ofaerogel/ epoxy composites, Journal of Materials Processing Technology 198 (2008); 178 -182.
- 6. Leonard A., Blacher S., Crine M. i wsp.: Evolution of mechanical properties and final textural properties of resorcinol-formaldehyde xerogels during ambient air drying, Journal of Non-Crystalline Solids 354 (2008); 831 - 838.
- 7. Yang J., Li S., Yan L. i wsp.: Compressive behaviors and morphological changes of resorcinol-formaldehyde aerogel at high strain rates, Microporous and Mesoporous Materials 133 (2010); 134 - 140.
- 8. Mirzaeian M., Hall P. J.: Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries, Electrochimica Acta 54 (2009); 7444 - 7451.
- 9. Czakkel O., Szekely E., Koczka B.: Drying of resorcinol-formaldehyde gels with C02medium, Microporous and Mesoporous Materials 148 (2012); 34-42.
- 10. Kiciński W.: Aerożele węglowe otrzymywane z prekursora rezorcynowo-furfuralowego, Biuletyn Wojskowej Akademii Technicznej, Vol. 58, 4(2009); 197-221.
- 11. Leonard A., Job N., Blacher S.: Suitability of convective air drying for the production of porous resorcinolformaldehyde and carbon xerogels, Carbon 43 (2005); 1778 - 1814.
- 12. Mathieu B., Blacher S., Pirard R.: Freeze-dried resorcinol-formaldehyde gels, Journal of Non-Crystalline Solids 212 (1997); 250 - 261.
- 13. Kocklenberg R., Mathieu B., Blacher S.: Texture control of freeze-dried resorcinol-formaldehyde gels, Journal of Non-Crystalline Solids 225 (1998); 8-13.
- 14. Feng Ju., Zhang Ch., Feng Ji.: Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement, Materials Letters 67 (2012); 266 - 268.
- 15. Curran H. L.: Kinetic energy absorbing aerogel composite structures for use in crash of impact protection and body or vehicle armor, Johns Hopkins University Applied Physics Laboratory, June 1, 2009.
- 16. Bashline M., DeRubeis A.: Aerogels: the twentieth century discovery that is influencing industry, University of Pittsburgh, Eighth Annual Freshman Conference, April 5 (2008); 1 - 10.
- 17. Giurgiutiu V., Reifsnider K. L., Rogers C. A.: Rate-independent energy dissipation mechanisms in fiber-matrix material systems, Proceedings of the 37th Structures, Structural Dynamics, and Materials Conference, Salt-Lake City (UT), April 15-17 (1996); 897 - 907.
- 18. Inagaki M.: Pores in carbon materials-importance of their control, New Carbon Materials Vol. 24, 3 (2009); 193 - 232.
- 19. Scherdel C., Scherb T., Reichenauer G.: Spherical porous carbon particles derived from suspensions and sediments of resorcinol-formaldehyde particles, Carbon 47 (2009); 2244 - 2252.
- 20. Petricevic R., Reichenauer G., Bock V.: Structure of carbon aerogels near the gelation limit of the resorcinol-formaldehyde precursor, Journal of Non-Crystalline Solids 225 (1998); 41 - 45.
- 21. Tamon H., Ishizaka H., Araki T.: Control of mesoporous structure of organic and carbon aerogels, Carbon Vol. 36, No. 9 (1998); 1257-1262.
- 22. Long D., Liu X., Qiao W.: Molecular design of polymer precursors for controlling microstructure of organic and carbon aerogels, Journal of Non-Crystalline Solids 355 (2009); 1252 - 1258.
- 23. Job N., Thery A., Pirard R.: Carbon aerogels, cryogels andxerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon 43 (2005); 2481 - 2494.
- 24. Horikawa T., Hayashi J., Muroyama K.: Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin, Carbon 42 (2004); 169 - 175.
- 25. Staggs S. E.: Penetration resistance of polymer crosslinked aerogel armor subjected to projectile impact, OK State University, Stillwater, 2009.
- 26. Leventis N.: Polymer crosslinked aerogels: from armor to porous carbides and metals, Missouri University of Science and Technology, Rolla, Missouri, Symposium BB: Aerogels and Aerogel- Inspired Materials, Nov 28 - Dec 1, 2010.
- 27. Leventis N.: Assemblies of nanoparticles as 3D scaffolds for new materials: from mechanically strong polymer crosslinked aerogels to porous metals and ceramics, Department of Chemistry, Missouri S&T, Rolla, MO, 2011.
- 28. Katti A., Shimpi N., Roy S.: Chemical, physical and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels, Chem. Mater. 18 (2006); 285 - 296.
- 29. Zhang G., Rawashdeh A-M. M., Sotiriou-Leventis C: Isocyanate cross-linked silica: structurally strong aerogels, Polymer Preprints 2003, 44(1); 35-36.
- 30. Zhang G, Dass A., Rawashdeh A-M.: Isocyanate cross-linked silica aerogel monoliths, Journal of Non-Crystalline Solids Vol. 350 (2004); 152-164.
- 31. Meador M. A. B., Fabrizio E. R, Ilhan E: Crosslinkingamine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials, Chem. Mater. 17 (2005); 1085 - 1098.
- 32. Luo H., Lu H., Leventis N.: The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates, Mechanics of Time-Dependent Materials 10 (2006); 83 - 111.
- 33. Leventis N., Meador M. A. B., Johnston J. C: Highly porous and mechanically strong ceramic oxide aerogels, Patent no. US 7,732,496 Bl, Jun. 8, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS6-0003-0002