PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD modelling of combustion in HCCI engine using avl fire software

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
HCCI (Homogenous Charge Compression Ignition) combustion system is now one of the most promising solutions used in piston engines. The paper presents the results of three-dimensional modeling of combustion in the single cylinder HCCI engine powered with Diesel fuel. 3D modeling was performed in AVL Fire code. The basic combustion parameters including start of the ignition (SOI), burn duration (BD), indicated pressure (pi) and nitric oxide (NO) and soot (Soot) emissions were analyzed. The modeling results show that combustion process in HCCI engine compared to a conventional engine with compression ignition is characterized by an earlier ignition (SOI) and shorter burn duration (BD). The impossibility of controlling HCCI combustion process leads to deterioration of engine performance and increased emissions of harmful exhaust gas components. Calculations showed that for the same equivalence ratio of burn mixture, uncontrolled HCCI combustion compared to a controlled combustion in engine with fuel injection operated is characterized by higher NO emission and reduced Soot emission.
Twórcy
autor
  • Institute of Thermal Machinery, Faculty of Mechanical and Computer Engineering, Technical University of Czestochowa
Bibliografia
  • 1. Motyl K., Rychter T. 2003. HCCI engine – a preliminary analysis. „Journal of Kones”, vol. 10, p. 3–4.
  • 2. Fabrizio Bisetti, J.-Y. Chenb, Evatt R. Hawkes, Jacqueline H. Chen. 2008. Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratifi ed mixture for application to HCCI engine modeling. „Combustion and Flame”, vol. 155, p. 571–584.
  • 3. Hunicz J., Niewczas A., Kordos P. 2010. A reseaech into a gasoline HCCI engine. „Combustion engines”, No. 1/2010 (140), p. 3–13.
  • 4. Ishida M., Jung S., Ukei H., Sakaguchi D. 2005. Combustion of premixed DME and natural gas in a HCCI engine. „Combustion engines”, No. 2/2005 (121), p. 20-29.
  • 5. Motyl K., Lisowski A. 2008. Wpływ temperatury początkowej i składu mieszaniny palnej na pracę silnika HCCI zasilanego biogazem. „Inżynieria Rolnicza” 1(99)/2008, p. 311–317.
  • 6. Lu X.C., Chen W., Huang Z. 2005. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. The basic characteristics of HCCI combustion. „Fuel”, 84, p. 1074–1083.
  • 7. Lu X.C., Chen W., Huang Z. 2005. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 2. Effect of operating conditions and EGR on HCCI combustion. „Fuel” ,84, p. 1084–1092 .
  • 8. Jamrozik A., Kociszewski A., Sosnowski M., Tutak W. 2006. Simulation of combustion in SI engine with prechamber. „CADMD’2006”, Ukraine, p. 66–69.
  • 9. Jamrozik A., Tutak W., Kociszewski A., Sosnowski M. 2006. Numerical Analysis of Infl uence of Prechamber Geometry in IC Engine with Two-Stage Combustion System on Engine Work Cycle Parameters. „Journal of Kones”. Vol 13, No 2, p. 133–142.
  • 10. Tutak W., Jamrozik A., Kociszewski A., Sosnowski M. 2007. Numerical analysis of initial swirl profi le infl uence on modeled piston engine work cycle parameters. „Combustion engines”, 2007-SC2, p. 401–407.
  • 11. Kociszewski A., Jamrozik A., Sosnowski M., Tutak W. 2007. Simulation of combustion in multi spark plug engine in KIVA-3V. „Combustion engines”. 2007-SC2, p. 212–219.
  • 12. Tutak W. 2009. Modelling of Flow Processes in the Combustion Chamber of IC Engine. „MEMSTECH’2009”, Ukraine. p. 45–48.
  • 13. Tutak W. 2008. Thermal Cycle of Engine Modeling with Initial Swirl Process into Consideration. „Combustion Engines”, 1/2008 (132), p. 56–61.
  • 14. AVL Fire version 2009, ICE Physics & Chemistry, Combustion, Emission, Spray, Wallfi lm. „AVL LIST GmbH”.
  • 15. Jamrozik A., Tutak W. 2010. Modelling of combustion process in the gas test engine. „MEMSTECH 2010”. p. 14–17.
  • 16. Tutak W., Jamrozik A. 2010. Numerical analysis of some parameters of gas engine. „Teka Polish Academy of Science Branch Commission of Motorization and Power Industry in Agriculture”, Volume X, p. 491–502.
  • 17. Tutak W., Jamrozik A. 2010. Modelling of the thermal cycle of gas engine using AVL Fire Software. „Combustion engines”, No. 2/2010 (141), p. 105–113.
  • 18. Tutak W. 2011. Possibility to reduce knock combustion by EGR in the SI test engine. „Journal of Kones”, No 3, p. 485–492.
  • 19. Tutak W. 2011. Numerical analysis of the impact of EGR on the knock limit in SI test engine. „Teka Polish Academy of Science Branch Commission of Motorization and Power Industry in Agriculture”, T11, p. 397–406.
  • 20. Tutak W. 2011. Numerical analysis of some parameters of SI internal combustion engine with exhaust gas recirculation. „Teka Polish Academy of Science Branch Commission of Motorization and Power Industry in Agriculture, T11, p. 407–414.
  • 21. Cupiał K., Tutak W., Jamrozik A., Kociszewski A. 2011. The accuracy of modelling of the thermal cycle of a self-ignition engine. „Combustion engines”, No. 1/2011 (144), p. 37–48.
  • 22. Naber J.D., Szwaja S. 2007. Statistical approach to characterize combustion knock in the hydrogen fuelled SI engine, „Journal of Kones”, vol. 14, No. 3, p. 443–450.
  • 23. Szwaja S. 2009. Hydrogen rich gases combustion in the IC engine. „Journal of Kones”, vol. 16, No.4, p. 447–455.
  • 24. Szwaja S. 2009. Time-frequency representation of combustion knock in an internal combustion engine, „Combustion Engines”, PTNSS-2009-SC-132, p. 306–315.
  • 25. Szwaja S. 2009. Combustion Knock - Heat Release Rate Correlation of a Hydrogen Fueled IC Engine Work Cycles, „9th International Conference on Heat Engines and Environmental Protection. Proceedings”, Hungary.
  • 26. Cupiał K., Szwaja S. 2010. Producer gas combustion in the internal combustion engine, „Combustion Engines”, No. 2/2010, p. 27–32.
  • 27. Inagaki K., Fuyuto T., Nishikawa K., Nakakita. 2006. Combustion system with premixture – controlled compression ignition. „R&D Review of Toyota” Vol. 41, No. 3, p. 35–46.
  • 28. Ishida M., Jung S., Ukei H., Sakaguchi D. 2005. Combustion of premixed DME and natural gas in a HCCI engine. „Combustion engines”, No. 2/2005 (121), p. 20–29.
  • 29. Hunicz J., Niewczas A., Kordos P. 2010. A research into a gasoline HCCI engine. „Combustion engines”, No. 1/2010 (140), p. 3–13.
  • 30. Jamrozik A. 2011. Numerical study of EGR effects on the combustion process parameters in HCCI engines. „Combustion engines”, No. 4/2011 (147), p. 50–61.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS6-0001-0071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.