PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of exhaust gas recirculation on the ignition delay in supercharged compression ignition test engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of analysis of thermal cycle of the test engine are presented in the paper. The study focused on determining the ignition delay in compression ignition engine. The correlations available in literature, Hardenberg and Hase, Wolfer and Watson and Assanis were used to determine ignition delay. With the increase of the EGR the ignition delay has increased. It turned out that very often it is necessary to determine own ignition delay correlation.
Twórcy
autor
Bibliografia
  • 1. Heywood J. B. 1988. Internal combustion engine fundamentals. McGraw-Hill.
  • 2. Hardenberg H. O. and Hase F. W. 1979. An Empirical Formula for Computing the Pressure Rise Delay of a Fuel from Its Cetane Number and from the Relevant Parameters of Direct-Injection Diesel Engines. SAE Paper 790493, SAE Trans. Vol. 88, 1979, DOI: 10.4271/790493
  • 3. Rodríguez R. P., Sierens R. and Verhelst S. 2011. Ignition delay in a palm oil and rapeseed oil biodiesel fuelled engine and predictive correlations for the ignition delay period. Fuel 90 (2011), 766-772.
  • 4. Alkhulaifi K. and Hamdalla M. 2011. Ignition Delay Correlation for a Direct Injection Diesel Engine Fuelled with Automotive Diesel and Water Diesel Emulsion. World Academy of Science, Engineering and Technology 58.
  • 5. Lee, J.H. and Lida N. 2001. Combustion of diesel spray injected into reacting atmosphere of propane-air homogeneous mixture. Int. J. Engine Res., 2(1): 69-80.
  • 6. Aligrot, C., J.C. Champoussin and N. Guerrassi, 1997. A correlative model to predict auto ignition delay of diesel fuels. SAE transactions, 106(3): 958-963.
  • 7. Assanis, D.N., Z.S. Filipi and S.B. Fiveland, 2003. A predictive ignition delay correlation under steady-state and transient operation of a direct injection diesel engine. J. Eng. Gas Turbines Power, 125: 450.
  • 8. Colin O. and Benkenida A. 2004. The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/ Diffusion Combustion. Oil & Gas Science and Technology.
  • 9. Wolfer H.H. 1938. Ignition lag in diesel engines. VDIForschungsheft, 392: p. 621-436.047
  • 10. Watson N., Pilley A. D. and Marzouk M. 1980. A Combustion Correlation for Diesel Engine Simulation. SAE 800029.
  • 11. Zou H., Wang L., Liu S. and Li Y. 2008. Ignition delay of dual fuel engine oprating with methanol ignited by pilot diesel. Front. Energy Power Eng. China, 2(3): 285-290, DOI: 10.1007/s11708-008-0060-z
  • 12. Asad U. and Zheng M. 2008. Fast Heat Release Characterization of Modern Diesel Engines, International Journal of Thermal Sciences, Vol. 47, Issue 12, 1688-1700, doi:10.1016/j.ijthermalsci.2008.01.009.
  • 13. Liu Z. and Karim G. A. 1998. An Examination of the Ignition Delay Period in Gas-Fueled Diesel Engines. Transaction of the ASME Journal of Engineering for Gas Turbines and Power, 120, January, 225-231, January 01.
  • 14. Cupiał K., Tutak W., Jamrozik A. and Kociszewski A. 2011. The accuracy of modelling of the thermal cycle of a compression ignition engine. Combustion Engines.
  • 15. Tutak W. 2011. Possibility to reduce knock combustion by EGR in the SI test engine. Journal of KONES, Powertrain and Transport, No 3, 485-492, Warszawa.
  • 16. Tutak W. 2011. Numerical analysis of the impact of EGR on the knock limit in SI test engine. TEKA PAN, 397-406, T11.
  • 17. Tutak W. 2011. Numerical analysis of some parameters of SI internal combustion engine with exhaust gas recirculation. TEKA PAN, 407-414. T11.
  • 18. Jamrozik J. and Tutak W. 2010. Numerical analysis of some parameters of gas engine. Polish Academy of Science Branch in Lublin, TEKA, Commission of Motorization and Power Industry in Agriculture, Vol. X, 491-502, Lublin.
  • 19. Szwaja S. 2009. Combustion Knock - Heat Release Rate Correlation of a Hydrogen Fueled IC Engine Work Cycles, 9th International Conference on Heat Engines and Environmental Protection. Proceedings. Balatonfured, 83-88, Hungary.
  • 20. Szwaja S. and Naber J.D. 2009. Combustion of N-Butanol in a Spark-Ignition IC Engine, Fuel, 2009.
  • 21. Szwaja S. 2009. Hydrogen Rich Gases Combustion in the IC Engine, Journal of KONES Powertrain and Transport Vol.16 nr 4, 447-454.
  • 22. Szwaja S. 2009. Time-Frequency Representation of Combustion Knock in an Internal Combustion Engine, Silniki Spalinowe R.48 nr SC2, 306-315, 2009.
  • 23. Jamrozik A. 2006. Modelowanie procesu tworzenia tlenku azotu w komorze spalania gazowego silnika ZI. VII Międzynarodowa Konferencja Naukowa SILNIKI GAZOWE 2006, Zeszyty Naukowe Politechniki Częstochowskiej 162, Mechanika 26, 348-359.
  • 24. Jamrozik A. 2008. Analiza numeryczna procesu tworzenia i spalania mieszanki w silniku ZI z komorą wstępną. Teka Komisji Motoryzacji Polskiej Akademii Nauk oddział w Krakowie, Zeszyt Nr 33-34, Kraków, 143-150.
  • 25. Jamrozik A. 2009. Modelling of two-stage combustion process in SI engine with prechamber. MEMSTECH 2009, V-th International Conference PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN, Lviv- Polyana, UKRAINE, 13-16.
  • 26. Jamrozik A. 2011. Analysis of indication errors of the SI gas engine with a prechamber. TEKA PAN. Teka Commission of Motorization and Power Industry in Agriculture. Volume XI, 2011, 143-156.
  • 27. Jamrozik A. 2011. Numerical optimization of ignition in the internal combustion engines. Teka PAN, Teka Commission of Motorization and Power Industry in Agriculture. Volume XI, 2011, 157-165.
  • 28. Jamrozik A. 2011. Numerical study of EGR effects on the combustion process parameters in HCCI engines. Combustion Engines, No. 4/2011 (147), 2011, 50-61.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS5-0001-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.