PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shunt power electronic buffer as active filter and energy flow controller

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The considered shunt active power filter can be controlled not only to compensate non-active current in the supply source, but additionally to optimize energy flow between the source and the load. In such a case the filter shapes the source current to be active and simultaneously regulates its magnitude. The presented filter/buffer can operate properly even when the load contains AC or DC variable energy source of any characteristic. The device can optimize energy flow for a single load, but also for a group of loads as well. The distinctive feature of the employed control method of the filter/buffer is that certain changes of energy stored in the device are utilized as the source of information concerning the active current of the load. This control method is very flexible and can be implemented to nearly all structures of active filters, for DC, single- and multiphase circuits.
Rocznik
Strony
55--75
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
Bibliografia
  • [1] Abdeslam D., Wira P., Merckle J. et al., A unified artificial neural network architecture for activepower filters. IEEE Trans. Ind. Electron. 54(1): 61-47 (2007).
  • [2] Akagi, H., Active harmonic filters. Proc. of the IEEE 93(12): 2128-2141 (2005).
  • [3] Aredes M., Haefner J., Heumann K., , Three-phase four-wire shunt active filter control strategies. IEEE Trans. Power Electron. 12(2): 311-8 (1997).
  • [4] Chiang S.J., Ai W.J., Lin F.J., Parallel operation of capacity-limited three-phase four-wire activepower filters. IEE Proc. Electr. Power Appl. 149(5): 329-36 (2002).
  • [5] Czarnecki L.S., Budeanu and Fryze: Two frameworks for interpreting power properties of circuitswith nonsinusoidal voltages and currents. Arch. fur Elektrot. 80(6): 359-67 (1997).
  • [6] Depenbrock M., The FDB-method, a generalized applicable tool for analyzing power relations. IEEE Trans. on Power Delivery 8(2): 381-7 (1993).
  • [7] Depenbrock M., Staudt V., The FBD-method as tool for compensating total non-active currents. 8th Int. Conf. on Harm. and Qual. of Power 1: 320-4 (1998).
  • [8] Depenbrock M., Staudt V., Stability problems if three-phase systems with bidirectional energy floware compensated using the FDB-method. Proc. of 8th ICHQP, pp. 325-30 (1998).
  • [9] El-Habrouk M., Darwish M.K., Mehta P., Active power filters: a review. IEE Proc. Electr. Power Appl. 147(5): 403-13 (2000).
  • [10] Fryze S., Wirk-, Blind-, und Scheinleistung in Elektrischen Stromkreisen mit nichtsinusformigemVerlauf von Strom und Spannung. ETZ 53: 596-9, 625-7, 700-2 (1932).
  • [11] Strzelecki R., Wojciechowski M., New Control System of the Shunt Active Power Filter. Int. School on Nonsinus. Currents and Compensation, Łagów, Poland (2008).
  • [12] Habetler T., Harley R., Power electronic converter and system control. Proc. of the IEEE 89(6): 913-25 (2001).
  • [13] Strzelecki R., Wojciechowski M., Power flow in typical series-parallel hybrid filters topologies. PQ2008: 6th International Conference, Pärnu, Estonia (2008).
  • [14] Hassenzahl W., Hazelton D., Johnson B. et al., Electric power applications of superconductivity. Proc. of the IEEE 92(10): 1655-74 (2004).
  • [15] Jain S.K., Agrawal P., Gupta H.O., Fuzzy logic controlled shunt active power filter for power qualityimprovement. IEE Proc. Electr. Power Appl 149(5): 317-28 (2002).
  • [16] Strzelecki R., Benysek G., Jarnut M., Kot E., Voltage source power line condiotioners. JUEE. 10(1/2): 13-24 (2004).
  • [17] Komurcugil H., Kukrer O., A new control strategy for single-phase shunt active power filters usinga Lyapunov function. IEEE Trans. Ind. Electron. 53(1): 305-12 (2006).
  • [18] Kunjumuhammed L., Mishra M., A control algorithm for single-phase active power filter undernon-stiff voltage source. IEEE Trans. Power Electron. 21(3): 822-5 (2006).
  • [19] Lin B., Huang C., Implementation of a three-phase capacitor-clamped active power filter underunbalanced condition. IEEE Trans. Ind. Electron. 53(5): 43-52 (2006).
  • [20] Lin B-R., Lee Y-C., Three-phase power quality compensator under the unbalanced sources andnonlinear loads. IEEE Trans. Ind. Electron. 51(5): 1009-17 (2004).
  • [21] Lin H., Intelligent neural network-based fast power system harmonic detection. IEEE Trans. Ind. Electron. 54(1): 43-52 (2007).
  • [22] Moreno V., Pigazo A., Modified FBD method in active power filters to minimize the line currentharmonics. IEEE Trans Power Delivery 22(1) 735-46 (2007).
  • [23] Strzelecki R., Benysek G., Jarnut M., Interconnection of the Customer-Side Resources Using SinglePhase VAPF. 5th Int. Conf-Workshop CPE 2007, Poland, (2007).
  • [24] Ortuzar M., Carmi R., Dixon J., Moran L., Voltage-source active power filter based on multilevelconverter and ultracapacitor DC link. IEEE Trans. Ind. Electron. 53(2): 477-85 (2006).
  • [25] Ovaska S., Vainio O., Evolutionary-programming-based optimization of reduced-rank adaptivefilters for reference generation in active power filters. IEEE Trans. Ind. Electron. 51(4): 910-6 (2004).
  • [26] Piróg S., PWM rectifier and active filter with sliding-mode control. EPE’97 (1997).
  • [27] Ribeiro P., Johnson B., Crow M., Arsoy A., Liu Y., Energy storage systems for advanced power applications. Proc. of the IEEE 89(112): 1744-56 (2001).
  • [28] Routimo M., Salo M., Tuusa H, Comparision of voltage-source and current-source shunt activepower filters. IEEE Trans. Power Electron. 22(2): 636-43 (2007).
  • [29] Singh B., Al-Haddad K., Chandra A., A review of active filters for power quality improvement. IEEE Trans. Ind. Electron. 46(5): 960-71 (1999).
  • [30] Szromba A., A shunt active power filter: development of properties. COMPEL 23(2): 1146-62 (2004).
  • [31] Szromba A., Synchronized active power filter. 4th Int. Workshop Compatibility in Power Electronics CPE 2005, pp. 148-65, Gdynia, Poland, (2005).
  • [32] Akagi H., Watanabe E., Aredes M., Instantaneous Power Theory and Applications to Power Conditioning. Wiley & Sons. (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS4-0005-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.