PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Studies of the Ammonia Decomposition over a Mixture Of α - Fe(N) And γ' - Fe4n

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An industrial pre-reduced iron catalyst for ammonia synthesis was nitrided in a differential reactor equipped with the systems that made it possible to conduct both the thermogravimetric measurements and hydrogen concentration analyser in the reacting gas mixture. The nitriding process, particularly the catalytic ammonia decomposition reaction, was investigated under an atmosphere of ammonia-hydrogen mixtures, under the atmospheric pressure, at 475oC. The nitriding potentials were changed gradually in the range from 19.10-3 to 73.10-3 Pa-0.5 in the reactor for an intermediate area where two phases exist simultanously: Fe(N) and γ’-Fe4. In the area wherein P > 73.10-3 Pa-0.5, approximately stoichiometric composition of γ’ - Fe4N phase exists and saturating of that phase by nitrogen started. The rate of the catalytic ammonia decomposition was calculated on the basis of grain volume distribution as a function of conversion degree for that catalyst. It was found that over γ’ - Fe4N phase in the stationary states the rate of catalytic ammonia decomposition depends linearly on the logarithm of the nitriding potential. The rate was decreasing along with increase in the nitriding potential. For the intermediate area, the rate of ammonia decomposition is a sum of the rates of reactions which occur on the surfaces of both Fe(N) and γ’ - Fe4N.
Rocznik
Strony
97--101
Opis fizyczny
Bibliogr. 58 poz., rys.
Twórcy
autor
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland, kkielbasa@zut.edu.pl
Bibliografia
  • 1. Yin, S.F., Xu, B.Q., Zhou, X.P. & Au C.T. (2004). A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A 277, 1-9. DOI: 10.1016/j.apcata.2004.09.020.
  • 2. Chellappa, A.S., Fisher, C.M. & Thomson, W.J. (2002). Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl. Catal. 227, 231-40.
  • 3. Jennings, J.R. (Ed.). (1991). Catalytic AmmoniaSynthesis. New York, USA: Plenum Press.
  • 4. Currey, J.H. (1991). Ammonia destruction at citizens gas and coke utility. Iron Steel Eng. 68 (7), 43-45.
  • 5. Li, Y. & Armor. J.N. (1997). Selective NH3 oxidation to N2 in a wet stream. Appl. Catal. B 13, 131-137.
  • 6. Mojtahedi, W. & Abbasian, J. (1995). Catalytic decomposition of ammonia in a fuel gas at high temperature and pressure. Fuel 74 (11), 1698-1703. DOI: /10.1016/0016-2361(95)00152-U.
  • 7. Svoboda, K.P. & Diemer, P.E. (1990). Catalytic decomposition of ammonia from coke-oven gas. IronSteel Eng. 12, 42-46.
  • 8. Armor, J.N. (1994). Environmental catalysis. Washington, USA: ACS.
  • 9. Szmigiel, D., Raróg-Pilecka, E., Kowalczyk, Z., Jodzis, S. & Zieliński, J. (2004). Ammonia decomposition over the ruthenium catalysts deposited on magnesium-aluminum spinel. Appl. Catal. 264, 59-63. DOI: 10.1016/j.apcata.2003.12.038.
  • 10. Raróg-Pilecka, Szmigiel, D.E., Kowalczyk, Z., Jodzis, S. & Zieliński, J. (2003). Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cerium. J. Catal. 218, 465-469. DOI: 10.1016/ S0021-9517(03)00058-7.
  • 11. Ganley, J.C., Thomas, F.S., Seebauer, E.G. & Masel, R.I. (2004). A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal Lett. 96, 117-122. DOI: 10.1023/B:CATL.0000030108.50691.d4.
  • 12. Choudhary, T.V., Sivadinarayana, C. & Goodman, D.W. (2001). Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 72, 197-201.
  • 13. Choudhary, T.V., Sivadinarayana, C. & Goodman, D.W. (2003). Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon reforming and catalytic dehydrogenation of ammonia. Chem. Eng. J. 93, 69-80.
  • 14. Deshmukh, S.R., Mhadeshwar, A.B. & Vlachos, D.G. (2004). Microreactor modeling for hydrogen production from ammonia decomposition on ruthenium. Ind. Eng. Chem. Res. 43, 2986-2999.
  • 15. Sorensen, R.Z., Nielsen, L.J.E., Jensen, S., Hansen O., Johannessen, T., Quaade, U. & Chrisyensen, C.H. (2005). Catalytic ammonia decomposition: miniaturized production of COx-free hydrogen for fuel cells. Catal. Commun. 6, 229-232. DOI: 10.1016/j.catcom.2005.01.005.
  • 16. Yin, S.F., Zhang, Q.H., Xu, B.Q., Zhu, W.X., Ng, Ch.F. & Au, C.T. (2004). Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 224, 384-396.
  • 17. Kiyoshi, N., Hiroyuki, F. & Akio, N. (1979). Highlypurity hydrogen, JP79. 126.689.
  • 18. Wang, W., Padban, N., Andersson, A. & Bjerle, I. (1999). Kinetics of Ammonia Decomposition in Hot Gas Cleaning. Ind. Eng. Chem. Res. 38, 4175-4182.
  • 19. Löffler, D.G. & Schmidt, L.D. (1976). Kinetics of NH3 decomposition on polycrystalline Pt. J. Catal. 41. 440-454.
  • 20. Oyama, S.T. (1992). Kinetics of ammonia decomposition on vanadium nitride. J. Catal. 133, 358-369.
  • 21. Djega-Mariadassou, G., Shin, C.H. & Bugli, G. (1999). Tamaru’s model for ammonia decomposition over titanium oxynitride. J. Mol. Catal. A: Chem. 141, 263-267.
  • 22. Wise, R.S. & Markel, E.J. (1994). Catalytic NH3 decomposition by topotactic molybdenum oxides and nitrides: effect on temperature programmed γ-Mo2N synthesis. J. Catal. 145, 335-343.
  • 23. Arabczyk, W. & Zamłynny, J. (1999). Study of the ammonia decomposition over iron catalysts. Catal. Lett. 60, 167-171.
  • 24. Simell, P.A., Hepola, J.O. & Krause, A.O.I. (1997). Effects of gasifications gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76, 1117-1127.
  • 25. Hinshelwood, C.N. & Burk, R.E. (1925). The thermal decomposition of ammonia upon various surfaces. J. Chem. Soc. 127, 1105-1117. DOI: 10.1039/CT9252701105.
  • 26. Cooper, D.A. & Ljungstrom, E.B. (1988). Decomposition of NH3 over Quartz Sand at 840-960oC EnergyFuels 2, 716-719.
  • 27. Dirtu, D., Odochian, L., Pui, A. & Humelnicu, I. (2006). Thermal decomposition of ammonia. N2H4 - an intermediate reaction product. Cent. Eur. J. Chem. 4, 666-673. DOI: 10.2478/s11532-006-0030-4.
  • 28. Bonhoeffer, K.F. & Farkas, L.Z. (1928). The interpretation of diffuse molecular spectra. Experiments on the photochemical decomposition of ammonia. Physik. Chem. 134, 337-344.
  • 29. Giquel, A., Saillard, P. & Laidani, N. (1989). Mechanism of catalytic decomposition in an NH3 low pressure plasma. Rev. Phys. Appl. 24, 285-294.
  • 30. Bradford, M.C.J., Fanning, P.E. & Vannice, M.A. (1997). Kinetics of NH3 decomposition over well dispersed. Ru. J. Catal. 172, 479-484.
  • 31. Tsai, W. & Weinberg, W.H. (1987). Steady-state decomposition of ammonia on the Ru(001) surface. J. Phys. Chem. 91, 5302-5307.
  • 32. Papapolymerou, G. & Bontontozolou, V. (1997). Decomposition of NH3 on Pd and Ir comparisonwith Pt and Rh. J. Mol. Catal. A 120, 165-171.
  • 33. Ohtsuka, Y., Xu, C., Kong, D. & Tsubouchi, N. (2001). Am. Chem. Soc. Div. Fuel Chem. Prepr. 46, 151.
  • 34. Grunze, M., Bozso, F., Ertl, G. & Weiss, M. (1978). Interaction of ammonia with Fe(111) and Fe(100) surfaces. Appl. Surf. Sci. 1, 241-265.
  • 35. Weiss, M., Ertl, G. & Nitschke, F. (1979). Adsorption and decomposition of ammonia on Fe(110). Appl. Surf. Sci. 2, 614-635.
  • 36. Ertl, G. & Huber, M. (1980). Mechanism and kinetics of ammonia decomposition on iron. J. Catal. 61, 537-539.
  • 37. Kowalczyk, Z., Sentek, J., Jodzis, S., Muhler, M. & Hinrichsen, O. (1997). Effect of potassium on the kinetics of ammonia synthesis and decomposition over fused iron catalyst at atmospheric pressure. J. Catal. 169, 407-414.
  • 38. Kowalczyk, Z. (1996). Effect of potassium on the high pressure kinetics of ammonia synthesis over fused iron catalyst. Catal. Lett. 37, 173-179.
  • 39. Tsai, W., Vajo, J. & Weinberg, W.H. (1985). Inhibition by Hydrogen of the heterogeneous decomposition of ammonia on platinum. J. Phys. Chem. 89, 4926-4932.
  • 40. Vavere, A. & Hansen R.S. (1981). Decomposition of ammonia on rhodium crystals. J. Catal. 69, 158-171.
  • 41. Willey, R.J. & Fox, M.F.I.I. (1988). Ammonia decomposition over. 430-ss etched metal catalysts J. Catal. 112, 590-594.
  • 42. Liang, Ch., Li, W., Wei, Z., Xin, Q. & Li, C. (2000). Catalytic decomposition of ammonia over nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3catalyst. Ind. Eng. Chem. Res. 39, 3694-3697.
  • 43. Arabczyk, W. & Pelka, R. (2009). Studies of the kinetics of two parallel reactions: ammonia decomposition and nitriding of iron catalyst. J. Phys. Chem. A. 113, 411-416.
  • 44. Pelka, R. & Arabczyk, W. (2009). Studies of the kinetics of reaction between iron catalysts and ammonia - nitriding of nanocrystalline iron with parallel. catalytic ammonia decomposition. Top. Catal. 52, 1506-1516. DOI: 10.1007/s11244-009-9297-y.
  • 45. Arabczyk, W., Zamłynny, J., Moszyński, D. & Kałucki, K. (2005). Ammonia decomposition over iron in the presence of water vapor. Polish J. Chem. 79, 1495-1501.
  • 46. Arabczyk, W., Zamłynny, J. & Moszyński, D. (2006). The influence of hydrogen sulphide on the kinetics of ammonia decomposition over a doubly promoted iron catalyst. Polish J. Chem. 80, 345-350.
  • 47. Arabczyk, W., Moszyński, D., Narkiewicz, U., Pelka, R. & Podsiadły, M. (2007). Poisoning of iron catalyst by sulfur. Catal. Today 124, 43-48. DOI: 10.1016/j.cattod.2007.02.003.
  • 48. Pelka, R., Moszyńska, I. & Arabczyk, W. (2009). Catalytic ammonia decomposition over Fe/Fe4N. Catal. Lett. 128, 72-76.
  • 49. Tamaru, K. (1988). A “new”general mechanism of ammonia synthesis and decomposition on transition metals. Acc. Chem. Res. 21, 88-94.
  • 50. Löffler, D.G. & Schmidt, L.D. (1976). Kinetics of NH3 decomposition on iron at high temperatures. J. Catal. 44, 244-258.
  • 51. Temkin, M.I. & Pyzhev,V. (1939). Kinetics of the synthesis of ammonia on promoted iron catalysts Jour. Phys. Chem., 13, 851-867.
  • 52. Temkin, M.I. & Pyzhev, V. (1940). Kinetics of the synthesis of ammonia on promoted iron catalysts. ActaPhysiochem. 34, 6512.
  • 53. Kiełbasa, K., Pelka, R. & Arabczyk, W. (2010). Studies of the kinetics of ammonia decomposition on promoted nanocrystalline iron using gas phases of different nitriding degree. J. Phys. Chem. A. 114, 4531-4534. DOI: 10.1021/jp9099286.
  • 54. Moszyńska, I., Moszyński, D. & Arabczyk, W. (2009). Hysteresis in nitriding and reduction in the nanocrystalline iron-ammonia-hydrogen system. Przem. Chem. 88, 526-529.
  • 55. Wróbel, R. & Arabczyk, W. (2006). Solid-gas reaction with adsorption as the rate limiting step. J. Phys. Chem. A. 110, 9219-9224.
  • 56. Arabczyk, W. & Wróbel, R. (2003). Study of the kinetics of nitriding of nanocrystalline iron using the TG and XRd methods. Solid State Phenomena. 94, 185-188.
  • 57. Arabczyk, W. & Wróbel, R. (2003). Utilization of XRD for the determination of the size distribution of nanocrystalline iron materials. Solid State Phenomena. 94, 235-238.
  • 58. Pelka, R., Moszyński, D. & Arabczyk, W. (2010). Letter of PL patent application no. P 393391.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS4-0005-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.