PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optoelectronic sensor for simultaneous and independent temperature and elongation measurement using Bragg gratings

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Optoelektroniczny czujnik do równoległego i niezależnego pomiaru temperatury i wydłużenia wykorzystujący światłowodowe siatki Bragga
Języki publikacji
EN
Abstrakty
EN
The present article proposes a system for a sensor for simultaneous measuring of elongation and temperature, using two fibers Bragg gratings with different resonance wavelengths. For measuring the elongation, linearity was obtained for the conversion characteristic of 0.06% and 0.08% respectively for the first and second Bragg gratings. In the case of the sensor proposed, the non-linearity errors of the temperature conversion characteristic were 3.43% and 2.36% respectively for the first and second gratings.
PL
W niniejszym artykule zaproponowano układ czujnika do równoczesnego pomiaru wydłużenia i temperatury, wykorzystującego dwie światłowodowe siatki Bragga o różnych długościach fal rezonansowych. Dla pomiarów wydłużenia uzyskano liniowość charakterystyki przetwarzania rzędu 0.06% i 0.08% odpowiednio dla pierwszej i drugiej siatki Bragga. Błędy nieliniowości charakterystyki przetwarzania temperatury wyniosły w przypadku zaproponowanego czujnika 3,43% oraz 2,36% odpowiednio dla siatki pierwszej i drugiej.
Rocznik
Strony
343--346
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
Bibliografia
  • [1] Mroczka J. Szczuczyński D. , Improved regularized solution of the inverse problem in turbidimetric measurements, Appl. Opt. 49, (2010) 4591-4603.
  • [2] Guan B., Tam H., Chan H. L. W. Choy C. Demokan M. S, Discrimination between strain and temperature with a single fiber Bragg grating, Microwave and optical technology letters, , Vol. 33, No. 3 (2002) 200-202.
  • [3] Zhou D. P., Wei L., Liu W. K., Lit W. Y. J., Simultaneous measurement of strain and temperature based on a fiber Bragg grating combined with a high-birefringence fiber loop mirror, Optics Communications 281 (2008) 4640–4643.
  • [4] James S.W., Dockney M.L., Tatam R.P.,Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors, Electronic Letters, (1996) Vol. 32, No. 12, 1133-1134.
  • [5] Chan T.H.T., L . Yua, Tam H.Y. , N i Y.Q., Liu S.Y. , Chung W.H., Cheng L.K., Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation, Engineering Structures 28 (2006) 648–659.
  • [6] Kaczmarek C. , Optical wavelength discriminator based on a Sagnac loop with a birefringent fiber, Przegląd Elektrotechniczny Vol. (2011), No 11, 325-328.
  • [7] Fernandez-Valdivielso C., Matıas I.R., Arregui F. J ., Simultaneous measurement of strain and temperaturę using a fiber Bragg grating and a thermochromic material, Sensors and Actuators A 101 (2002) 107–116.
  • [8] Sungchul K . , Jaejoong K., Sungwoo K., Byoungho L., Temperature-Independent Strain Sensor Using a ChirpedGrating Partially Embedded in a Glass Tube, IEEE Photonics Technology Letters, VOL. 12, NO. 6 (2000) 678-680.
  • [9] Kang S. C., Kim S. Y., Lee S. B., Kwon S. W., Choi S. S. , Lee B., Temperature-Independent Strain Sensor System Using a Tilted Fiber Bragg Grating Demodulator, IEEE Photonics Technology Letters, VOL. 10, NO. 10 (1998) 1461-1463.
  • [10] Guan B. O., Tam H. Y., Tao X. M. , Dong X. Y., Simultaneous Strain and Temperature Measurement Using a Superstructure Fiber Bragg Grating, IEEE IEEE photonics technology letters, VOL. 12, NO. 6 (2000) 675-677.
  • [11] Rogers A. J., Handerek V. A., Kanellopoulos S. Zhang E., J . , New ideas in nonlinear distributed optical-fiber sensing, Proc. Soc. Photo-Opt. Instrum. Eng. vol. 2507, (1995) 162-174.
  • [12] Caucheteur C., Lhomme F., Chah K. , Blondel M. , Megret P., Simultaneous strain and temperature sensor based on the numerical reconstruction of polarization maintaining fiber Bragg gratings, Optics and Lasers in Engineering 44 (2006) 411–422.
  • [13] Rao Y. J., Yuan S. F., Zeng X.K . , Lian D. K., Zhu Y., Wang Y. P., Huang S. L., Liu T. Y., Fernando G. F., Zhang L., I. Bennion, Simultaneous strain and temperaturę measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system, Optics and Lasers in Engineering 38 (2002) 557–566.
  • [14] Mroczka J . Szczuczyński D. , Simulation research on improved regularized solution of the inverse problem in spectra extinction measurements, Applied Optics, Vol. 51, Issue 11 (2012) 1715-1723.
  • [15] Mroczka J., Szczuczyński D. Inverse problems formulated in term of first-kind fredholm integral equations in indirect measurements, Metrology and Measurement Systems, 16(3), (2009) 333-357.
  • [16] Anscombe F. J ., Graphs in Statistical Analysis, The American Statistician, Vol. 27, No. 1. (1973) 17-21.
  • [17] Cohen J . , Statistical power analysis for the behavioral sciences (1988).
  • [18] Zhou D. P., Wei L., Liu W. K., Liu Y. , Lit J. W. Y., Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers, Applied Optics, Vol. 47, Issue 10 (2008) 1668-1672.
  • [19] Frazão O., Marques L. M., Santos S., Baptista J. M. , Santos J . L., IEEE Photonics Technology Letters, VOL. 18, NO. 22 (2006), 2407-2409.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS4-0004-0116
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.