Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Symulacja numeryczna łuku cząstkowego przez zanieczyszczoną powierzchnię izolacyjną przy napięciu stałym
Języki publikacji
Abstrakty
The development of an arc along the polluted surface depends to a great extent on the electric field of streamer at the arc head and the current densities in the wet polluted layer and arc. To investigate the parameters that vary depending on the arc length during the development of an arc, a simplified model of development arc along the polluted surface was established. Based on the numerical calculation of characteristic quantities of electric field and current density in the simplified model, the influencing factors on the development of arc were investigated.
W artykule opisano budowę uproszczonego modelu tworzenia się łuku elektrycznego przez zanieczyszczoną powierzchnię. Na podstawie analizy parametrów pola elektrycznego i gęstości prądu w modelu, określono i zbadano wpływ poziomu zanieczyszczeń powierzchni na rozwój łuku.
Wydawca
Czasopismo
Rocznik
Tom
Strony
272--275
Opis fizyczny
Bibliogr. 16 poz., tab., rys.
Twórcy
autor
autor
autor
autor
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China, guofs@yahoo.cn
Bibliografia
- [1] M. EI-A. Slama, A. Beroual, H. Hadi, Analytical computation of discharge characteristic constants and critical parameters of flashover of polluted insulators, IEEE Trans. Electr. Insul., (2010), No. 17, 1764-1771.
- [2] R. T. Waters, A. Haddad, H. Griffiths, N. Harid, P. Sarkar, Partial-arc and spark models of the flashover of lightly polluted insulators, IEEE Trans. Dielectr. Electr. Insul., 17 (2010), No. 2, 417-424.
- [3] B. Subba Reddy, Udaya Kumar, Enhancement of surface flashover performance of high voltage ceramic disc insulators, J. Mater. Eng. Perform., 20 (2011), No. 1, 24-30.
- [4] R.Sundararajan, R. S. Gorur, Dynamic arc modeling of pollution flashover of insulators under dc voltage, IEEE Trans. Electr. Insul., 28 (1993), No. 2, 209-218.
- [5] I. F. Gonos, F. V. Topalis, I. A. Stathopolos, Genetic algorithm approach to the modeling of polluted insulators, IEE Proc.- Gener. Transm. Distrib., 149 (2002), No. 3, 373-376.
- [6] P. S. Ghosh, S. Chakravorti, N. Chatterjee, Estimation of timeto- flashover characteristics of contaminated electrolytic surfaces using neural network, IEEE Trans. Dielectr. Electr. Insul., 2 (1995), No. 6, 1064-1074.
- [7] M. T. Gencoglu, M. Uyar, Prediction of flashover voltage of insulators using least squares support vector machines, Expert Syst. Appl., (2009), No. 36, 10789-10798.
- [8] Chen J., Ding L., Numerical simulation of electric field distribution of insulator surface, Insulators and Surge Arresters, (2009), No. 6, 16-18.
- [9] Wang Y., Li X., Yu L., Yan J., Numerical simulation study on characteristics of gliding arc discharge, Acta Phys. Sin., 60 (2011), No. 3, 035203.
- [10] Yao G., Wen X., Lan L., Electric field of wet contamination on dielectric surface and creeping discharge in needle-board electrodes, High Voltage Engineering, 36 (2010), No. 6, 1407-1414.
- [11] N. Dhahbi-Megriche, A.Beroual, Flashover dynamic model of polluted insulators under ac voltage, IEEE Trans. Dielectr. Electr. Insul., 7 (2000), No. 2, 283-289.
- [12] Guo Z., Zhao W., Arc and thermal plasma, Beijing: Science Press, China, 1986, 55-60.
- [13] Sima W., Guo F., Yang Q., Yuan T., Calculation of the arc velocity along the polluted surface of short glass plates considering the air effect, Energies, 2012, No. 5, 815-834.
- [14] Guan Z., Insulator and the external insulation of power transmission equipment, Beijing: Tsinghua University Press, China, 2006, 351-352.
- [15] Li S., Zhang R., Tan K., The study of electric arc propagating along a polluted dielectric surface under AC voltage, Proceedings of the CSEE, 11 (1991), No. 2, 1-7.
- [16] Hubert P. Michel G. Drouet, Dynamic measurements of the current distribution in the foot of an arc propagating along the surface of an electrolyte, IEEE Trans. Power Appar. Syst., 101 (1982), No. 3, 725-736.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS4-0004-0101