PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Higher order reversal curves in some hysteresis models

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some physical concepts important for a hysteresis model (effective field, anhysteretic magnetization) are discussed on the example of Jiles-Atherton model. The Jiles-Atherton model reveals some drawbacks, which make this model more difficult to be applied in electrical engineering. In particular, it does not describe accurately the magnetization curves after a reversal, moreover complex magnetization cycles are poorly represented. On the other hand, the phenomenological description proposed by Takács seems to be a valuable alternative to the Jiles-Atherton formalism. The concept of effective field may be easily incorporated in the description.
Słowa kluczowe
Rocznik
Strony
455--470
Opis fizyczny
Bibliogr., 85 poz., rys.
Twórcy
autor
  • Faculty of Electrical Engineering, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland, krzych@el.pcz.czest.pl
Bibliografia
  • [1] Andrei P., Caltun O. Stancu Al., Rate dependence of first-order reversal curves by using a dynamicPreisach model of hysteresis. Physica B, 372: 265-8 (2006).
  • [2] Andrei P., Stancu Al., Caltun O., Modeling and simulation of electrical circuits with hysteretic inductorsby using a dynamic Preisach model. [In:] Preisach Memorial Book, Iványi A. (Ed.), Akádémiai Kiadó, Budapest, pp. 187-197 (2005).
  • [3] Andrei P., Stancu Al., Hauser H., Fulmek P., Temperature, stress, and rate dependent numerical implementationof magnetization processes in phenomenological models. Journal of Optoelectronics and Advanced Materials 9(4): 1137-1139 (2007).
  • [4] Atherton D.L., Schönbächler M., Measurements of reversible magnetization component. IEEE Transactions on Magnetics 24(1): 616-20 (1988).
  • [5] Azzaoui S., Srairi K., El Hachemi Benbouzid M., Non-linear magnetic hysteresis modelling by finitevolume method for Jiles-Atherton model optimizing by a genetic algorithm. Journal of Electromagnetic Analysis and Applications 3: 191-198 (2011).
  • [6] Benda O., Barta Št., Open problems in the Preisach modeling of magnetic hysteresis. [In:] NonlinearElectromagnetic Systems. A.J. Moses, A. Basak (Eds.), IOS Press, pp. 380-385, Amsterdam (1996).
  • [7] Benda O., Bydzovský J., Problems in modelling reversible processes in soft magnetic materials. Journal of Magnetism and Magnetic Materials 160: 87-88 (1996).
  • [8] Bertotti G., General properties of power losses in soft magnetic materials. IEEE Transactions on Magnetics 24(1): 621-630 (1988).
  • [9] Bertotti G., Connection between microstructure and magnetic properties of soft magnetic materials. Journal of Magnetism and Magnetic Materials 320: 2436-2442 (2008).
  • [10] Brockmeyer A., Schülting L., Modelling of dynamic losses in magnetic materials. Proceedings EPE’93, Brighton, UK, 13-16.09.1993, pp. 112-117 (1993).
  • [11] Broddefalk A., Lindenmo M., Dependence of the power losses of a non-oriented 3% Si-steel onfrequency and gauge. Journal of Magnetism and Magnetic Materials 320: e586-588 (2006).
  • [12] Calle C., Cuellar F., Guzmán O., Mendoza A., Simulaciones de comportamientos hysteréticos blandosen péliculas magnéticas. Revista Colombiana de Física 38: 541-544 (2006).
  • [13] Carpenter K.H., A differential equation approach to minor loops in the Jiles-Atherton model of hysteresis. IEEE Transactions on Magnetics 27(1): 4404-4406 (1991).
  • [14] Carpentieri M., Azzerboni B., Finocchio G., La Foresta F., State-Independent Hypothesis to model thebehaviour of magnetic materials. Journal of Magnetism and Magnetic Materials 280: 158-163 (2004).
  • [15] Chandrasena W., McLaren P.G., Annakage U.D. et al., Simulation of hysteresis and eddy current effects in a power transformer. Electric Power System Research 76(8): 634-641 (2006).
  • [16] Chiesa N., Power transformer modeling for inrush current calculation. PhD Thesis, Norwegian Technical University of Science and Technology, Trondheim (2010).
  • [17] Chua L.O., Stromsmoe K., Lumped-circuit models for nonlinear inductors exhibiting hysteresisloops. IEEE Transactions on Circuit Theory 17(4): 564-574 (1970).
  • [18] Chua L.O., Bass S.C., A generalized hysteresis model. IEEE Transactions on Circuit Theory 19(1): 36-48 (1971).
  • [19] Chwastek K., Szczygłowski J., An alternative method to estimate the parameters of Jiles-Athertonmodel. Journal of Magnetism and Magnetic Materials 314: 47-51 (2007).
  • [20] Chwastek K., Frequency behaviour of the modified Jiles-Atherton model. Physica B 403: 2484-2487 (2008).
  • [21] Chwastek K., Szczygłowski J., Estimation methods for the Jiles-Atherton model parameters - a review. Przegląd Elektrotechniczny 12: 145-148 (2008).
  • [22] Chwastek K., Modeling of dynamic hysteresis loops using the Jiles-Atherton approach. Mathematical and Computer Modelling of Dynamical Systems 15(1): 95-105 (2009).
  • [23] Chwastek K., Modelling offset minor hysteresis loops with the modified Jiles-Atherton description. Journal of Physics D: Applied Physics: 42: 16, pp. 165002 (2009).
  • [24] Chwastek K., Szczygłowski J., Wilczyński W., Modelling dynamic hysteresis loops in steel sheets. COMPEL 28(3): 603-612 (2009).
  • [25] Chwastek K., AC loss density component in electrical steel sheets. Philosophical Magazine Letters 90, 11: 809-817 (2010).
  • [26] Chwastek K., A dynamic extension to the Takács model. Physica B 405: 3800-3802 (2010).
  • [27] Chwastek K., Modelling magnetic properties of MnZn ferrites with the modified Jiles-Athertondescription. Journal of Physics D: Applied Physics 43: 015005-5 (2010).
  • [28] Chwastek K., Szczygłowski J., Wilczyński W., Minor loops in the Harrison model. Acta Physica Polonica A 121: 941-944 (2012).
  • [29] Chwastek K., Szczygłowski J., The effect of anisotropy in the modified Jiles-Atherton model of statichysteresis. Archives of Electrical Engineering 60(1): 49-57 (2011).
  • [30] Deane J.H.B., Modelling the dynamics of nonlinear inductor circuits. IEEE Transactions on Magnetics 30(5): 2795-2801 (1994).
  • [31] de Campos M., Falleiros I.G.S., Landgraf F.J.G., Análise cË itica do modelo das perdas em excesso. (Critical analysis of the model of excess losses. In Portuguese). Proceedings 58o Congresso Annual da ABM, Rio de Janeiro, 21-23.07.2003, pp. 2237-2246 (2003).
  • [32] de Campos M., Landgraf F.J.G., Is there any physical basis for the loss separation procedure? Soft Magnetic Materials Conference, Kos, Greece. (Poster S02-P0445) (2011).
  • [33] De Leon Fr., Semlyen A., A simple representation of dynamic hysteresis loops in power transformers. IEEE Transactions on Power Delivery 10(1): 315-321 (1995).
  • [34] Della Torre E., Oti J., Kádár Gy., Preisach modelling and reversible magnetization. IEEE Transactions on Magnetics 26(6): 3052-3058 (1990).
  • [35] Della Torre E., Magnetic hysteresis. IEEE Press, Piscataway (1999).
  • [36] Dlala E., Belahcen A., Arkkio A., Efficient magnetodynamic lamination model for two-dimensionalfield simulation of rotating electrical machines. Journal of Magnetism and Magnetic Materials 320(20): e1006-10 (2008). See also: Dlala E., Magnetodynamic vector hysteresis model for steel laminationsof rotating electrical machines. PhD Thesis, Helsinki University of Technology, Espoo (2008).
  • [37] Dupré L., Melkebeek J.A.A., Electromagnetic hysteresis modelling: from material science to finiteelement analysis of devices. International Compumag Society Newsletter 10(3): 4-15 (2003).
  • [38] Dupré L., Sablik M.J., Van Keer R., Melkebeek J., Modelling of microstructural effects on magnetichysteresis properties. Journal of Physics D: Applied Physics 35: 2086-2090 (2002).
  • [39] Faiz J., Saffari S., A new technique for modeling hysteresis in soft magnetic materials. Electromagnetics 30(4): 376-401 (2010).
  • [40] Gozdur R., Wyznaczanie quasi-statycznej pętli histerezy blach elektrotechnicznych. (Determinationof quasi-static hysteresis loop of electrical steel. In Polish), Przegląd Elektrotechniczny 2: 147-149 (2004).
  • [41] Gyselink J., Dular P., Sadowski N. et al., Incorporation of a Jiles-Atherton vector hysteresis modelin 2D FE magnetic field computations. COMPEL 23(3): 685-693 (2004).
  • [42] Haller T.R., Kramer J.J., Observation of dynamic domain size variation in a silicon-iron alloy. Journal of Applied Physics 41(3): 1034-1035 (1970).
  • [43] Hamimid M., Mimoune S. M., Féliachi M., Hybrid magnetic formulation based on the losses separationmethod for modified dynamic inverse Jiles-Atherton model. Physica B 406: 2755-2757. (2011).
  • [44] Harrison R., A physical model of spin ferromagnetism. IEEE Transactions on Magnetics 39(2): 950- 960 (2003).
  • [45] Harrison R., Positive-feedback theory of hysteresis recoil loops in hard ferromagnetic materials. IEEE Transactions on Magnetics 47(1): 175-191 (2011).
  • [46] Jiles D.C., Atherton D.L., Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials 61: 48-60 (1986).
  • [47] Jiles D.C., A self-consistent generalized model for the calculation of minor loop excursions in thetheory of hysteresis. IEEE Transactions on Magnetics 28(5): 2602-2604 (1992).
  • [48] Jiles D.C., Thoelke J.B., Theory of ferromagnetic hysteresis: determination of model parametersfrom experimental hysteresis loops. IEEE Transactions on Magnetics 25(5): 3928-3930 (1989).
  • [49] Jiles D.C., Thoelke J.B., Devine M.K., Numerical determination of hysteresis parameters for themodelling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Transactions on Magnetics 28(5): 27-35 (1992).
  • [50] Jiles D.C., Frequency dependence of hysteresis curves in conducting magnetic materials. Journal of Applied Physics 76(10): 5849-5855 (1994).
  • [51] Jiles D.C., Modelling the effect of eddy current losses on frequency dependent hysteresis in electricallyconducting media. IEEE Transactions on Magnetics 30(6): 4326-4328 (1994).
  • [52] Kádár Gy., The bilinear product model of hysteretic phenomena. Physica Scripta T25, 161-164 (1989).
  • [53] Kádár Gy., Szabó Zs., Magnetization process as a combined function of field and temperature in theproduct model of hysteresis. Journal of Magnetism and Magnetic Materials, pp. 272-276, e547-9 (2004).
  • [54] Kádár Gy., The Preisach-type product model of magnetic hysteresis. (In:) A. Iványi (Ed.), Preisach Memorial Book, Akadémiai Kiadó, Budapest, pp. 15-27 (2005).
  • [55] Kleineberg T., A generalized approach for modelling the nonlocal memory of hysteretic systems. Journal of Magnetism and Magnetic Materials 166: 315-320 (1999).
  • [56] Knypiński Ł., Nowak L., Sujka P., Radziuk K., Application of a PSO algorithm for identification ofthe parameters of Jiles-Atherton hysteresis model. IET Conference Proceedings 2011(Issue CP577): 134-135, DOI: 10.1049/cp.2011.0070 (2011).
  • [57] Kobayashi S., Takahashi S., Shishido T. et al., Low field magnetic characterization of ferromagnetsusing a minor-loop scaling law. Journal of Applied Physics 107, 023908 (6 pp.) (2010).
  • [58] Lederer D., Igarashi H., Kost A., Honma T., On the parameter identification and application of theJiles-Atherton hysteresis model for numerical modelling of measured characteristics. IEEE Transactions on Magnetics 35(3): 1211-1214 (1999).
  • [59] Łyskawiński W., Sujka P., Szeląg W., Barański, M., Numerical analysis of hysteresis loss in pulsetransformer. Archives of Electrical Engineering 60(2): 187-195 (2011).
  • [60] Madelung E.R., Über Magnetisierung durch schnellverlaufende Strome und die Wirkungsweise derRutherford-Marconischen Magnetdetektors. Annalen der Physik 17(5): 861-863 (1905).
  • [61] Mayergoyz I.D., Mathematical models of hysteresis. Springer-Verlag, New York (1991).
  • [62] Mousavi S.A., Engdahl G., Differential approach of scalar hysteresis modeling based on thePreisach theory. IEEE Transactions on Magnetics 47: 3040-3043 (2011).
  • [63] Mukerji S.K., George M., Ramamurthy M.B., Asaduzzaman K., Eddy currents in laminated rectangularcores. Progress in Electromagnetics Research 83: 435-445 (2008).
  • [64] Pierce M.S., Buechler C.R., Sorensen L.B. et al., Disorder-induced magnetic memory: Experimentsand theories. Physical Review B 75(144406) (23 pp.). Also available at http: //arxiv.org/condmat/ 061142v2 (2007).
  • [65] Philips D.A., Dupré L.R., Melkebeek J.A.A., Comparison of Jiles and Preisach hysteresis models inmagnetodynamics. IEEE Transactions on Magnetics 31(6): 3551-3553 (1995).
  • [66] Rao M., Frequency-independent hysteresis in metallic magnets. Physical Review B 45(13): 7529- 7531 (1992).
  • [67] Rezaei-Zare A., Iravani R., On the transformer core dynamic behavior during electromagnetic transients. IEEE Transactions on Power Delivery 25(3): 1606-1619 (2010).
  • [68] Sablik M., Jiles D.C., Coupled magnetoelastic theory of magnetic and magnetostricitve hysteresis. IEEE Transactions on Magnetics 29(3): 2113-2123 (1993).
  • [69] Sadowski N., Batistela N., Bastos J.P.A., Lajoie-Mazenc M., An inverse Jiles-Atherton model totake into account hysteresis in time-stepping finite-element calculations. IEEE Transactions on Magnetics 38(2): 797-800 (2002).
  • [70] Schneider C.S., Winchell S.D., Hysteresis in conducting ferromagnets. Physica B 372: 269-272 (2006).
  • [71] Steinmetz C.P., On the law of hysteresis. AIEE Transactions, 3-64, reprinted under the title: A Steinmetzcontribution to the ac power revolution. (Introd. J.E. Brittain) (1984), Proceedings of the IEEE 72(2): 197-221 (1892).
  • [72] Szczygłowski J., Influence of eddy currents on magnetic hysteresis loops in soft magnetic materials. Journal of Magnetism and Magnetic Materials 223: 97-102 (2001).
  • [73] Takács J., A phenomenological mathematical model of hysteresis. COMPEL 20(2): 1002-1014 (2001).
  • [74] Takács J., Mathematics of hysteretic phenomena. Wiley-VCH, Weinheim (2003).
  • [75] Takahashi S., Zhang L., Minor hysteresis loop in Fe metal and alloys. Journal of the Physical Society of Japan 73(6): 1567-1575 (2004).
  • [76] Takahashi S., Kobayashi S., Kamada Y. et al., Analysis of minor hysteresis loops and dislocations inFe., Physica B 372: 190-193 (2006).
  • [77] Takahashi S., Kobayashi S., Scaling power-law relations in asymmetrical minor hysteresis loops. Journal of Applied Physics 107, 063903 (5 pp.) (2010).
  • [78] Talukdar S.N., Bailey J.R., Hysteresis models for system studies. IEEE Transactions on Power Apparatus and Systems 95: 1429-1434 (1976).
  • [79] Toms H.L., Colclaser R.G., Krefta M.P., Two-dimensional finite element magnetic modelling forscalar hysteresis effects. IEEE Transactions on Magnetics 37(2): 982-988 (2001).
  • [80] Theocharis A.D., Milias-Argitis J., Zacharias Th. (2008), Single-phase transformer model includingmagnetic hysteresis and eddy currents. Electrical Engineering 90: 229-241.
  • [81] Weiss P., L’hypothèse du champ moléculaire et la propriété ferromagnétique. Journal de Physique 4(6): 665-690 (1907).
  • [82] Young F.J., On the validity of characterizing eddy current phenomena by parabolic partial differentialequations. IEEE Transactions on Magnetics 14(6): 1185-1186 (1978).
  • [83] Zirka S.E., Moroz Yu.I., Hysteresis modeling based on transplantation. IEEE Transactions on Magnetics 31(6): 3509-3511 (1995).
  • [84] Zirka S.E., Moroz Yu.I., Hysteresis modeling based on similarity. IEEE Transactions on Magnetics 35(4): 2090-2096 (1999).
  • [85] Zirka S.E., Moroz Yu.I., Harrison R.H., Chwastek K., On physical aspects of the Jiles-Atherton hysteresismodel. Journal of Applied Physics 112: 043916 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS4-0003-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.