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ABSTRACT 

The work covers the adequate kinetics of the flexibly fixed working element of a rotating 

device. First the literature background of the problem has been presented, turning the attention on such 

systems where the phenomenon of centrifugal displacement of a body due to the rotating of the system 

occurs. Then the general characteristics of the complex motion of working element has been 

described. The core of the work is the description of the variable component motions, with the starting 

point of the description being the source differential equation, presenting this type of dependence of 

the path length on time. The accelerated angular motion and retarded radial motion have been 

separated, describing these component motions as the function of time. Based on these detailed 

descriptions, the trajectory equation of working element, the derivatives and further kinetic 

magnitudes, have been derived. In the conclusion, the cognitive and practical qualities of the presented 

solutions of the title problem, have been accented. 

 

Keywords: Kinetics; Susceptibility; Device; Potential field; Time constant; Body trajectory; Path 

length; Velocity; Acceleration 

 

 

 

 

1. INTRODUCTION 

 

The flexible characteristics of fixations of material bodies are multiple and variable, and 

in fact all they have such nature; thus they may be differentiated and considered from the 

point of view of scale, and magnitude of the flexibility. Such fixed bodies displace, changing 

their positions due to external reactions.  

This work directs the attention on the displacements of the operating elements of a 

rotating device, clearly indicating the kinetics of that element. Its motion has a character 

respectively complex, and that takes place specifically during the start-up of a device 

comprising such a susceptible system. 

It is referred to devices, showing with this essentially broad application. Kinetics of the 

susceptibly fixed operating element is noticed during the motion of different types of devices, 
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for instance: the elastic grinding wheel, centrifugal start-up coupling, flexible shaft, heads to 

centrifugal burnishing. 

It is worthy generalizing this kinetic quest by analysing it in much more detail; it is 

quite essential for the further developments of the subject, especially of the dynamics of a 

flexibly fixed operating element. It is mainly on the consideration and exact description of the 

inertia phenomenon; and that will be possible if the entire, complete kinetics will be taken 

into account. 

In the framework of introduction it is worthy adding the explanation, what is covered 

under the notion of kinetics. The kinetics covers such a mechanical characteristics of the 

body, where the body mass is not considered, treating it as a material point only. Kinetics 

covers then such magnitudes, like: the path length, velocity, acceleration; with all of them 

characterizing each motion of the body, so variable, and uniform. 

 

 

2. LITERATURE BACKGROUND OF THE PROBLEM 

 

It is worthy now, before entering any subject problem, presenting the literature 

background; the background showing the system, where the phenomenon of centrifugal body 

displacement appears due to rotating of the system under a fixation. 

Such operating elements may be the abrasive grains, situated on the peripheral surface 

of an elastic grinding wheel. That special porous abrasive tool, is manufactured by numerous 

renown companies [1-6]; these grinding wheels have polyurethane bond so the fixed grains in 

them may displace both during starting the rotating motion as well as during the material 

machining. 

The flexibility of grain fixations on the working surface of elastic grinding wheel is 

much greater that the flexibility of their fixation in the ceramic grinding wheels. If the 

displacements of grains in the machining zone during grinding equal over ten micrometers [7] 

and may be comparable with the cutting depth, so in case of elastic grinding wheels these 

displacements are considerably bigger and may reach the values even up to one millimeter [8-

10]. 

Turning such an elastic grinding wheel into rotating motion results in its radial 

deformation on the order of some millimeters [10]; however, its special fixing [11], providing 

more unconstrained deformation in the radial direction makes the radial expansion of the 

grinding wheel is noticed even on the length of over ten millimeters [12]. 

The operating element of the rotating tool may be also respectively elastically fixed the 

grinding wheel segment. That segment in turn may possess a rigid structure, resulting from 

the characteristics of the ceramic bond; or elastic, caused by the nature of polyurethane bond. 

The patent description [13] presents the solution of such fixation of the abrasive working 

element in a special head to the mechanical smoothing treatment. 

The example of a practical design solution should be added to the literature background. 

They are the start-up couplings, clutches, where the flexibly fixed weights/swings which 

cause coupling, during the rotating motion, of the shaft of electric engine with the driven shaft  

[14-15]. 

The essence of this problem may be referred to other technical/technological systems. 

The examples of a rod material during accelerating rotating motion are also interesting. The 

material of such a shape would be dynamically extended and the characteristics obtained 

would have a great significance from the viewpoint of a material strength [16]. Based on the 

kinetics of such formed material all forces occurring in this rotating rod could be determined. 

 



International Letters of Chemistry, Physics and Astronomy 3 (2013) 67-84                                                                                                                                  

 

69 

 

 

3. GENERAL CHARACTERISTICS OF THE COMPLEX MOTION OF WORKING 

ELEMENT 

 

A working element is fixed elastically, represented by a spring, and is in the point 0, at 

the distance 0r  from the center of a device rotation, containing that mass-spring system (Fig. 

1). 

 

 
Fig. 1. General characteristics of the complex motion of working element 

 

 

After the device setting in motion that element begins the motion in radial direction, and 

displaces, carried by the device case, in angular direction. In both the directions the variable 

motion takes place; however, in radial direction it has a retarded character (due to retarding 

action of spring element), and accelerated in the angular direction. 

After some time that element will displace angularly of the angle 1 , and in radial 

direction  of the radius increment   0110 rrr   , assuming the position corresponding with 

the point 1. From the energetic viewpoint one may say the body changed its energetic state, 

coming through the space-time (dotted area) from one notch of the potential fields to another 

notch. 

That notch is formed of the stable static potential fields: upper radial stable static 

potential field  rTSSPF  and the angle stable static potential field  SSPF . Bottom radial 

stable static potential field  rBSSPF  is concentrated in the rotation centre of the entire 

device, and between bottom and upper field of this type there is the energetic band (thick 

dotted area). The second notch is formed of the following fields: radial unstable static 

potential field  rASPF  and the angular kinematic potential field  KPF . This former field 
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is present at the moment of entrance of the considered body on the unstable static orbit. That 

field moves with a uniform motion, so relating to the kinematics, with the name coming out of 

this field. 

It is worthy adding that the notion of the potential fields, understood as the sites of 

energetic states of the material body, was introduced by the author in the monograph [10]. 

Furthermore, this notion found its broader application, for instance in [17], where the 

adequate description of the tool life under cut versus main velocity was done. That 

dependence, surely the quantum one, was usually approximated by one or two straight lines. 

At this stage of considerations one should state that the body trajectory on the path 

between the neighbouring orbits is non-linear; that results from the composition of two quite 

different variable motions. Furthermore this trajectory will be exactly described. Now the 

description of these component motions will be presented. 

 

 

4. DESCRIPTION OF VARIABLE COMPONENT MOTIONS 

 

The starting point to the description of these component motions is the source, general 

differential equation, covering the record of all variable phenomena of nature; it is contained 

in the monograph [10], covering the foundations of surface smoothing by means of elastic 

abrasive wheels. One may add the use of this equation has been presented in the work [17]. 

The mentioned general differential equation is as follows: 

 

                                                         dN
N

Z
dZ




                                                            (1) 

 

where: dZ   total differential of the dependent variable; dN   total differential of the 

independent variable; 
N

Z




  partial derivative of the dependent variable, referred to 

independent variable. The signs    are the algebraic operators, fulfilling a determined role. 

The sign    has a formal meaning, because it just confirms the physical sense of a 

determined dependence. The sign    ascribes such a sense to a determined record. 

For the considered variables the formula (1) has the following two forms: 

 

                                                          dt
t

d






                                                               (2) 

 

                                                          dt
dt

r
dr


                                                             (3) 

 

because the dependent variables are: the angular path length φ and the radial path length r, 

with time t being the dependent variable. As can be seen, the equation of the angular path 

length has the sign   , as it touches the accelerated motion. The equation of the radial path 

length possesses the sign   ; and that means it is referred to a retarded motion. 

Now the integrations on both sides of the dependences are to be performed; one should 

remember the total differential is the state function. It requires now the determination of states 
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for both these motions separately. That means the integration limits referred to these states 

should be defined. 

The scheme of creation of the adequate description of the dependence  tf  for 

accelerated motion is presented in Fig. 2, showing all elements of this reasoning process. The 

curve illustrating that dependence comes out of an initial point of the coordinates 0t , 

0 , and then has exponential and progressively rising course. It completes its non-linear 

course in the point 1, where the accelerated body motion has its end; then the linear course 

takes place, as the motion of the considered element is uniform. 

 

 
Fig. 2. Angle way characteristics of the working element in its accelerated motion 

 

 

The mentioned limits, concerning the studied system, are the potential fields. The time-

space is limited by these fields both on time and path directions. On the time direction they 

are the following fields of this type: time stable static potential field  tSSPF , and the time  

kinematic potential field  tKPF . On the path direction there are the following potential 

fields: angular stable static potential field  SSPF , and the angular kinematic potential field 
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 KPF . (It is worthy noticing that the time factor of the considered time-space has been 

revealed.) 

The path length of this time-space 10 , that is the distance between the angular  

potential fields, is equal to the kinematic path coordinate, that is k 10 . The time length 

10t  corresponds with the kinematic time coordinate kt , so ktt 10 . That last coordinate will 

be determined closer in the next section. 

The curve of the path length, comprised between the points 0-1, is the envelope of the 

right-angled triangles, with the time leg being constant and equal the so called time constant 

T, whereas the way leg varies respectively, that results from the changing position of tangent 

to this curve. For   the length of this leg equals k  . 

Now one may come to the integration of the equation (2), marking the limits of the 

integrals of total differentials. That means  

 

                                        












Tt

t

dt
t

d
k 






2

                                                         (4) 

 

and further 

 

                                             
T

dt

d
k


 

                                                          (5) 

 

or 

 

                                                
dt

T

d

k

1


 


                                                         (6) 

 

One may notice, the partial derivative has been substituted by the quotient of the total 

differentials. It could be done that way because the total differentials have been clearly 

determined through the introduction of limits of the integrals. 

Furthermore, by integrating both sides of the equation (6), one obtains the following 

result 

 

                                              *1
ln Ct

T
k                                                       (7) 

 

that is 

 

                               
T

t

T

t

C
C

T

t

k Ceeee 
 *

*

                                   (8) 
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After considering that for 0t  the magnitude 0 , one obtains 

 

                                                             kC                                                                   (9) 

 

and after substituting (9) to (8) 

 

                                          












 1T

t

k e
                                                         (10) 

 

or simply 

 

                                                












 1T

t

k e
                                                         (11) 

 

as in the initial point 00  , then 

 

                                  00                                                    (12) 

 

Now one may determine the second coordinate of the point 1, that is the time length kt . 

That result is obtained through the introduction the path length k   and the mentioned 

time length kt  to the equation (11). Therefore 

 

                                                       2lnTtk                                                                (13) 

 

The angular path length out of this time-space, that is in the uniform motion, is 

expressed by the following dependence: 

 

                                                        tk                                                                (14) 

 

where the symbol k  corresponds with the  kinematic angular rate. 

It is time now to present the scheme of creation of the adequate description of the 

dependence  tf  for a retarded motion (Fig. 3), so in the radial direction. The curve 

illustrating that dependence comes out of the initial point of the coordinates 0t , 0rr  , and 

further it has exponential and degressively rising course. It completes its non-linear and 

real/physical course in the point 1, where the retarded motion of the considered element has 

its end; further that real course is invariable, and constant. One may notice further, non-real, 
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fictional, just mathematic fragment of the non-linear course (dashed line), has been 

introduced. The need of introduction of such further fragment of the curve will be clarified in 

the next section. 

 

 
 

Fig. 3. Radial path characteristics of the working element in its retarded motion 

 

 

Now the integration of the dependence (3) on both sides should be performed; with this, 

one should remember that the total differential is the state function. Furthermore, it requires to 

determine the states, i.e. the integration limits for this retarded motion. 

It is known, the mentioned limits are the potential fields. These fields possess their 

positions on two directions; one of them is the direction of changes of the radial path length 

r , whereas the second one is the direction of time t. On this first direction, the following may 

be noticed: bottom radial stable static potential field  rBSSPF , upper radial stable static 

potential field  rTSSPF , radial unstable static potential field  rASPP , and the nominal static 

potential field NSPF. On the second direction, there are the following fields: time  stable static 
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potential field  tSSPF , time kinematic potential field  tKPF . Between the fields  rBSSPF  

and  rTSSPF  the potential band takes place (thick dotted area). The fields  rTSSPF , 

 rASPF , and  tSSPF  and  tKPF  limit the proper time-space (loose-dotted area), where 

the real exponential and degressively rising changes of the radial path length occur. Between 

the fields  rASPF  and NSPF there is an improper time-space, fulfilling the auxiliary role 

(that is an auxiliary mathematic tool). 

The curve of radial path length, comprised between the points 0-1, is the envelope of the 

right-angled triangle, moving with its horizontal leg on the nominal static potential field 

NSPF; with the horizontal leg being invariable and equal to the time constant T, whereas the 

vertical leg varies respectively, decreasing during displacement of triangle in the time 

direction. That nominal field is situated symmetrically against the level of the end of the 

retarded body motion, on the distance equal to the real space-time length in the direction of 

the radial path length. 

Thus beyond the real/proper space the above mentioned improper space is situated, 

where the curve (dashed line) approaches the asymptote, being this nominal potential field. 

This creature is an auxiliary design, needed to describe the real curve, reflecting the adequate 

dependence of the radial path length on time. 

Now one may begin the integration of the equation (3). By integrating this equation one 

should mark the limits of integrals of the total differentials. That means 

 

                                       

 














Tt

t

rrr

rr

dt
t

r
dr

011

0

                                                       (15) 

 

and further 

 

                                    
  T

dt

dr
rrr  012

                                                    (16) 

 

or 

                                      
dt

Trrr

dr 1

2 01


                                                    (17) 

 

One may notice, here the partial derivative has been substituted by the quotient of total 

differentials. It could be done that way because the total differentials have been clearly 

determined through the introduction of limits of their integrals. 

Furthermore, through the integration of both sides of the equation (17), one obtains the 

following result 

 

                             
   *

01

1
2ln Ct

T
rrr 

                                              (18) 
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that is 

 

                  T

t

T

t

C
C

T

t

Ceeeerrr



*

*

012                          (19) 

 

Regarding that for 0t , the magnitude 0r , one obtains 

 

                                                    012 rrC                                                             (20) 

 

and after substituting (20) to (19), and further, regarding that 01 rrr   

 

                                  
 

















T

t

errrr 12 010                                               (21) 

 

One may now determine the second coordinate of the point 1, i.e.   110 tt   . It is 

achieved through the introduction 1rr   and 1tt   to the equation (21). Therefore 

 

                                                       2ln1 Tt                                                                  (22) 

 

Now one can determine the body trajectory, that is the dependence  fr  , and also 

further, the derivative kinetic magnitudes. That is to be clearly presented in the following 

section. 

 

 

5. TRAJECTORY OF WORKING ELEMENT AND DERIVATIVE  AND FURTHER 

KINETIC MAGNITUDES 

 

First of all it is worthy formulating the dependence of the radial path length r  on the 

angular path length φ, that is  fr  . It is obtained from the equations (11) and (21), by 

introducing first T

t

e  from the equation (11), then 

 

                                                  
k

kT

t

e


 


                                                            (23) 

 

and further substituting (23) to (21), that leads in consequence to the following result 
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 









k

rr
rr 01
0

2
                                                  (24) 

 

or 

 

                                            

 

1

2 01
0








k

rr
rr

                                                        (25) 

 

This equation, as can be seen, is the recording of a hyperbolic spiral. Its real fragment 

(considered herewith) is determined by the radius r , variable in the limits from 0r  to 1r ; then 

there is the angle φ, with the variability in the limits from zero to 1 . 

Next the velocities: both angular   and radial rv  should be determined; they are of 

course the first derivatives corresponding with these directions of magnitudes, recorded by the 

formulae (11) and (21). Therefore 

 

                                   
T

t

T

t

k ee
Tdt

d
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
 

                                                  (26) 

 

                          

 
T

t

r
T

t

r eve
T

rr

dt
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v






 0012
                                              (27) 

 

Furthermore, one should provide with the analytic record of accelerations: angular ε and 

radial rp . These magnitudes, in turn, are the first derivatives of the velocity, or the second 

derivatives of the path length. Therefore 
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
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0

2

01

2
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                 (29) 

 

For the unstable state, if 2ln1 Ttt  , the corresponding velocities and accelerations 

assume the following forms: 
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                                                          01 2                                                                (30) 

 

                                                            2

0
1 r
r

v
v 

                                                                (31) 

 

                                                           01 2                                                                 (32) 

 

                                                           2

0
1 r
r

p
p 

                                                               (33) 

 

All these derivative kinetic magnitudes have been illustrated graphically (Fig. 4). One 

may notice, that for the angular motion, which is accelerated, they grow; the decreasing 

configuration relates to the radial motion, which is retarded. Of course, these changes are 

related to the body motion in the space-time. Later, in the uniform motion, they are invariable, 

constant. 

 
Fig. 4. Indicatrisse of dependences of angular velocity (a), radial velocity (b), angular acceleration (c), 

and radial acceleration (d), on time 
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The radial velocity rv  at the same time is the relative velocity wv , the radial 

acceleration rp  is the relative acceleration wp . In the peripheral direction the transportation 

velocity occurs which is connected with the angular velocity   by the following dependence: 

 

                                                       rvu                                                                 (34) 

 

Appearing in the same direction the transportation acceleration up  is comprised by the 

following dependence: 

 

                                                       rpu                                                                  (35) 

 

In the radial direction the known centrifugal acceleration op  occurs; it is expressed by the 

following formula: 

 

                                                       rpo  2                                                              (36) 

 

To close-up the matter, it is worthy presenting now the vector and scalar connections 

between the magnitudes occurring on the directions: radial and peripheral; in Fig. 5. the 

graphical presentation is given.  

 

 
 

Fig. 5. Velocity and acceleration vectors of working element on the directions: relative w - w and 

centrifugal o - o; absolute b - b; transportation u – u,  and resultant   
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The vector sum of velocities uv


 and wv


 gives the absolute velocity bv


, so 

 

                                                   uwb vvv


                                                              (37) 

 

This kind of the accelerations sum on the mentioned directions gives the absolute 

acceleration, then 

 

                                                    uwb ppp


                                                            (38) 

 

The centrifugal acceleration op , should be added to the mentioned above ones,  with the 

sum of all of them resulting in the total acceleration p . Therefore 

 

                                             ouw pppp


                                                        (39) 

 

or shorter, after taking into account (38) 

 

                                                 ob ppp


                                                            (40) 

 

The scalar recording of these connections may be written as follows: 

 

                                           22

uwb vvv                                                         (41) 

 

                                           22

uwb ppp                                                       (42) 

 

The relation between the total acceleration p  and the accelerations: absolute bp  and 

centrifugal op  results from the cosine theorem (Carnot), namely: 

 

            
      








 



2
cos2

222

bobo ppppp                                     (43) 

 

where the angle   is comprised between the velocities of: transformation uv  and absolute bv ; 

as well as between these kind of accelerations. 

It is worthy expressing the relationship between the transportation acceleration and the 

velocities: angular   and relative wv , for the energetic body states, i.e. on the radii 0r  and 1r . 

According to the formula (35) the accelerations for these radii equal as follows: 

 

                                                         00

0 rpu                                                                (44) 
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                                                    11

1 rpu                                                                 (45) 

 

By regarding T:00   , that results from the formula (28); and then 01 2  , which is 

given by the formula (32); the dependences (44) and (45) may be presented as follows: 

 

                                                     0
00 

T

r
pu                                                                (46) 

 

                                                     0
11 2


T

r
pu                                                              (47) 

 

Then one take advantage resulting from the formula (27), that is   

 

                                          

 
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from which  
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By substituting (49) and (50) to the formulae (46) and (47), respectively, one obtains 

finally 
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and 
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Fig. 6. Schemes of fixations of working element and corresponding descriptions of transportation 

acceleration 

 

 

For a particular case, if 00 r , according to the formula (48), one obtains 
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then 

 

                                                            
012
wv

T

r
                                                                 (54) 



International Letters of Chemistry, Physics and Astronomy 3 (2013) 67-84                                                                                                                                  

 

83 

 

 

that results from the formula (50). Therefore, substituting to (47), one obtains 

 

                                                     
0

0

1

wu vp                                                              (55) 

 

In case if the working element is not retarded (by a spring) in the radial direction, then 

in both these directions (radial and angular) it will move with the accelerated motion. Thus 
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The particular kinds of fixations of the working element differ substantially as to the 

stable working state (Fig. 6). It may be noticed, only for the first kind of the body fixation, 

there are two terminal transportation accelerations, related to the stable and unstable states of 

the body. For the remaining kinds of fixations and positioning of the considered element, 

where 00 r , the system is characterized by only one terminal transportation acceleration (for 

the unstable state). 
 

 

6. CONCLUSION 

 

In the summary it is worthy noting an extremely essential meaning of the considered 

motion phenomenon of the flexibly fixed working element of the rotating tool. Broad and 

adequate description of such a complex motion of the determined elements of a material 

system possesses not only a cognitive value; the outcome of that reasoning may be carried out 

on the grounds of practical applications, by analyzing the behaviours of rotating elastic 

abrasive tools, as well as the design elements. 

It should be stressed, that different variants of application of the working element and 

corresponding descriptions of the transportation acceleration have been considered. Thus it 

was possible to notice that particular situation with the description relating to the so called 

Coriolis acceleration. It appears that the acceleration is simply the transportation acceleration, 

though for a determined system. 

All the presented solutions are the starting point to further analyses; they are the 

analyses covering the dynamics and kinematics of the considered material system, when the 

mass and all forces would be referred to. 
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