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ABSTRACT 

          A theoretical model was developed using Green’s function with an anisotropic elastic tensor to 

study the strain distribution in and around three dimensional semiconductor pyramidal quantum dots 

formed from group IV and III-V material systems namely, Ge on Si, InAs on GaAs and InP on AlP. A 

larger positive strain in normal direction which tends to zero beyond 6nm was observed for all three 

types while the strains parallel to the substrate were negative. For all the three types of quantum dots 

hydrostatic strain and biaxial strain along x and z directions were not linear but described a curve with 

a maximum positive value near the base of the quantum dot. The hydrostatic strain in x-direction is 

mostly confined within the quantum dot and practically goes to zero outside the edges of the quantum 

dot. For all the three types, the maximum hydrostatic and biaxial strains occur in x-direction around 

1nm and around 2nm in z-direction. The negative strain in x-direction although realtively weak 

penetrate more deeper to the substrate than hydrostatic strain.The group IV substrate gave larger 

hydrostatic and biaxial strains than the group III-V semiconductor combinations and InAs /GaAs was 

the most stable. The results indicated that the movements of atoms due to the lattice mismatch were 

strong for group III-V.  
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1.  INTRODUCTION 
 

         Tremendous amount of research has been devoted in the last two decade to the study of 

quantum confined structures. The research in semiconductor electronics on one-dimensional 

quantum wires had attained much attention with the exploration of carbon nanotubes. The end 

of the reduction of dimensionality was finally reached with the zero-dimension. Quantum dots 

are nanostructures whose spatial extents in all three dimensions are small enough so that they 

exhibit in some respect, quasi-zero-dimensional electronic properties. With the reduction of 

the dimensions, the conduction band and the valence band converts to square like energy band 

in quantum well and  at zero-dimension, discrete energy levels are present (figure1).  

         Semiconductor material clusters, whose characteristic dimensions become comparable 

with the exciton Bohr radius, termed quantum dots, have real physical interpretation as zero-

dimensional potential wells. The well defined number of electrons in these nanometer scale 

shapes may be adjusted by changing their elastic and electrostatic environment.  
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           As quantum dots can be considered as a tiny crystals acting as one very large artificial 

atom, these are of considerable interest from a purely scientific standpoint as they can be 

distinguished by their discrete energy spectrum sharing the properties of single atoms which 

can be used as “artificial” atoms to test fundamental theories of the atomic physics. Although 

several technological barriers still remain semiconductor quantum dots are of immense 

technological importance and are often considered as basis for several revolutionary 

nanoelectronic devices such as low-threshold optoelectronic devices as well as for quantum 

computing applications. They can exist in a wide variety of shapes, including cubical, 

pyramidal, truncated-pyramidal and lens-shaped. The phenomenon of strain-mediated self-

assembly has particularly been the subject of intensive investigations as a versatile 

nanofabrication tool by which a variety of coherent and defect free semiconductor quantum 

dots and nanowires can be prepared inspiring a wide spectrum of potential nanoscale 

technologies
1
. Continuum elasticity and atomistic elasticity are the two approaches used to 

study the strains in quantum dots. In continuum elasticity, elastic energy is considered in 

terms of strain energy whereas in atomistic elasticity elastic energy is considered in terms of 

body potentials between atoms. Comparing these two methods, Prior
2 

related the strain in the 

substrate material to the strain in the quantum dot. A simple method involving the evaluation 

of a surface integral over the boundary of the quantum dot was used by Downs et al
3
 for 

calculating the stress and strain distributions arising from an initially uniformly strained 

quantum dot of arbitrary shape buried in an infinite isotropic medium. The strain distributions 

in quantum dots using Green’s functions with Fourier transformations was used by Andreev et 

al
4
 to obtain strain tensor for arrays of anisotropic quantum dots. Analytical solution for 

isotropic strain distributions using Green’s functional method with isotropic Green’s tensor 

was obtained by Faux and Pearson
5
. For successive orders of corrections this model 

converges towards an anisotropic model. Maranganthi and Sharma
6 

used a Green’s functional 

approach to calculate strain fields in embedded quantum dots and wires. Using classical 

theories and Green’s function method, Wang et al
7
 obtained a general solution for strain 

  

Figure 1. Energy band structure for zero, one, two, three dimensions with the size 
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profile for arbitrary shaped quantum dots and analyzed the quantum dot induce strain and 

electric fields in piezoelectric semiconductors. 

            In the present work, the Green’s functional approach of Maranaganthi and Wang
6,7

 

was extended by including three dimensional anisotropic strain tensor to find the strain in and 

around any general shape of semiconductor quantum dot. Anisotropy was included by a new 

equation which combines the isotropic elasticity and the anisotropic constant. The 

displacement was derived using Cartesian coordinate system for a pyramidal shaped quantum 

dot. Throughout the analysis of the strain profiles, base length and the height of the pyramid 

were kept as constants. For three types of quantum dot materials formed from group IV, Si on 

Ge and group III-V material systems, InAs on GaAs and InP on AlP, the stain tensor 

components as well as hydrostatic and biaxial strain distributions in the x and z directions 

were plotted. Group IV semiconductor strain induced quantum dots are interesting due to their 

compatibility with mainstream semiconductor industry and also due to their simplicity from 

the fundamental science standpoint. Due to smaller lattice mismatch (4%) between Si and Ge 

pure (intrinsic) semiconductors, Ge/Si quantum dots are suitable for detailed characterization 

with high resolution atomic force microscopes and scanning tunneling microscopes
8
. Also the 

extraction processes are comparably easier compared to compounds like GaAs/InAs, InP/AlP. 

GaAs/InAs been one of the most extensively investigated systems is of particular 

technological interest due to the high optical efficiency that can be realized.  
  

 

2.   STRAIN TENSOR FOR PYRAMIDAL QUANTUM DOTS 
 

          It is generally accepted that 

strain is the primary factor for 

quantum dot formation in lattice 

mismatched semiconductor systems. 

        Quantum dot is created when a 

thin layer of a semiconductor or a 

metal material known as wetting 

layer is deposited on a substrate 

material which has lower lattice 

constant (Figure 2). Because of the 

lattice mismatch between substrate  

 
Figure 3. Illustration of the dislocation of atoms due to the lattice mismatch of two materials A and B

 

 

 

Figure 2. Illustration of the growth process of wetting layer  
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material and the wetting material atoms in both quantum dot and substrate material try to 

relax elastically to accommodate this mismatch creating a body force. Atoms in wetting layer 

try to minimize the strain energy that is created by the perturbation of body force creating 

stretches and dilations in inter atomic bonds (Figure 3). The shape of the created quantum dot 

varies with the manufacturing method. 

          
In elastic materials of two substrates with lattice constants a1 and a2 parallel to the 

interface, the lattice mismatch or eigenstrain kle  whose effect generally similar to that of 

interface energy is given by 
 

 1 2

1

(1)kl

a a
e

a




 

 

and their representation by equivalent body force are well established in the classical 

micromechanics
9,10

. The elastic field is described by displacement vector u , stress tensor ζij, 

strain tensor εkl and the elastic constant also known as stiffness tensor  Cijkl    
 

  (2)ij ijkl kl klC e  
 

       

where,              . The six independent strain tensor components consisting of diagonal 

components εii representing the normal strain, compression or dilatation along the axes of the 

chosen coordinate system controlling the length of the axis and the non-diagonal shear strain 

components          controlling the angle between the axes are obtained from 
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where  ( , , ) .x y zu u uu  For small strains  
   

   
  . Using the above symmetric 

conditions, equation 2 reads 
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Substitution of equation 4 into equilibrium condition        , leads to 
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The equivalent body force created by the lattice mismatch is
7 

 

  , (6)i ijkl kl if C e r  

 

The above equation leads to a volume integral representation of the displacement 

 

      ( , ') , , , , (7)p jp ijkl kl i
V

u G C e dV j p x y z    r r r r'  

 

The Green’s function ( , ')jpG r r
 
is a singular displacement solution produced by a point 

source corresponding to j
th

 component of extended displacement at location r produced by the 

p
th

 component of an extended point force applied at '.r By assuming that the eigenstrain is 

uniform within the quantum dot domain V, the volume integral can be transformed into 

surface integral on the boundary V using Gauss’s theorem 

 

     ( , ') (8)p ijkl kl jp i
V

u C e G n ds


 r r r r r'  

 

where  in r is the outward normal to the boundary V. Green’s function for Navier’s 

equation is given by
6
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where i irr  and the elastic tensor is expressed in terms of two Lame constants  ,  ,   

representing the bulk modulus and   the sheer modulus. A pyramid can be considered to be 

formed by four triangular planes with a base (Figure 4) and the equations of the four 

triangular planes are derived by using two equations for any triangular plane with the 

direction ratios of a line perpendicular to that particular plane.  The equation of the ABE plane 

is given by 
 

0
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Similarly, the equations for BCE, DCE and ADE planes and z direction are respectively 
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The general position coordinate read,  
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By assuming that quantum dot surface can be 

effectively represented by number of triangular 

surfaces, displacements can be obtained from the 

equation 8 which in matrix form read, 
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In the isotropic case, the elasticity constant can be written as, 
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Where K is the bulk modulus, U is the shear modulus and δ is the kronecker delta function. 

Using the derivatives of displacement vectors obtained in equation 13 in equation 3, the strain 

tensor components can be obtained. In anisotropic media, the elasticity tensor gives the 

relationship between stresses and strains. As the symmetry of stress tensor indicates that there 

are at most six different elements of stress, the fourth rank elasticity tensor       can be 

written as a second rank matrix using Voigt notation, 
 

 
 

Figure 4 (a).  InAs/GaAs quantum dot.  

 

Figure 4(b). Geometrical representation of 

coordinates of a pyramid 
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3.  STRAIN PROFILES FOR Ge/Si, InAs/GaAs AND InP/AlP QUANTOM DOTS  
    

             With z axis directed normal to the hetero interface, the displacements in the three 

directions of the pyramidal quantum dot were obtained in Cartesian coordinates using 

equation 13 with the anistropic elastic tensor given in equation 15 and the strain components 

in equation 3.  

             In this case, the strain components along x and y axes are same due to symmetry, 

           and         where    and    are strain components in the directions 

parallel and normal to the plane of the hetero interface, respectively.  

             Hydrostatic strain and biaxial strain have a crucial influence on the potential energy 

of electron, the light-wave splitting and the hole states, having a significant effect on the study 

of photoelectric properties of quantum devices. The hydrostatic strain component can be 

written as  

 

                                      (16) 

 

 

and the biaxial strain component as  

 
 

        
 

 
                            (17) 
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Table 1. Lattice Constants and Crystal Structures of the Semiconductors 

 

 

           Three quantum dots formed from hetero structures of group IV, the low dimensional 

indirect gap semiconductors, Ge grown on Si, and III-V direct gap semiconductors InAs 

grown on GaAs, and direct gap InP grown on indirect gap AlP semiconductors were 

considered. The materials selected for the preparation of quantum dots mainly depend on their 

energy gap and their lattice mismatch. The lattice constants of these materials at 300
0
K are 

tabulated in table 1 and lattice mismatch for the three quantum dots in table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

            The base length a of the pyramid (Figure 4) was taken as 15.5nm  and the height h as 

5.5nm . All the graphs were obtained for x, y range of 5nm to 5nm  and z range of 

4  to 8 .nm nm  The strain profiles for the three semiconductor quantum dots Ge/Si, InAs/ 

GaAs and AlP /InP materials in x and z directions are shown in Figure 5, 6 and 7 respectively. 

All the maximum and minimum strain values lie within the base length    √         . A 

higher resultant strain is located in the lower half of the pyramid than in the upper half of the 

pyramid where the forces act mainly from the sides along the z direction. All three quantum 

dot combinations have large strain components normal to the plane and these strain 

components
 
              have positive strains or dilations inside the pyramid while the 

maximum dilation occur along the vertical axis of the pyramid      . The stress close to the 

vertex of the quantum dot is a small compression, which changes into a rapidly increasing 

Element or 

Compound 
Type Name 

Crystal    

Structure 

Lattice Constant 

at 300 K (Å) 

Ge Element Germanium Diamond 5.64613 

 

Si 
Element Silicon Diamond 5.43095 

 

InAs 
III-V Indium arsenide Zincblende 6.0584 

 

GaAs 
III-V Gallium arsenide Zincblende 5.6533 

 

InP 
III-V Indium phosphide Zincblende 5.8686 

AlP 

 
III-V Aluminum phosphide Zincblende 

 

5.4510 

 

Table 2. Lattice mismatch 

Quantum Dot Lattice mismatch % 

Ge/Si 3.9 

InAs/GaAs 6.8 

InP/AlP 7.2 
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tension along the path, and reaches a maximum at the interface. Following this, the stress is 

decreased in the substrate and tends to zero beyond 6nm far from the interface, forming the 

effect of “far field”.   

 
 

 

 
 

Figure 5.  Strain profile of Ge/Si (a) in x-direction and (b) in z-direction 

 

 

 

 
 

 
 

Figure 6. Strain Profile of InAs/GaAs (a) in x-direction and (b)  in z- direction 
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           For all the three types of quantum dots, the parallel strain components in x-y plane  

             along x and z directions have small negative values, indicating compression 

in these directions.
 
These compressive strains were created near the base of the pyramids. The 

strain rapidly changed across the interface, such that the compression and contraction in the 

film are changed into tension and elongation in the substrate, respectively. The strains in the 

substrates are attenuated to zero far from the interfaces. The strain across the interface being 

changed from contraction to elongation shows the self-adjustability of epitaxial growth, i.e. 

the epitaxial material and substrate can choose respective deformation of each other to enforce 

a matched and coherent interface. For the pyramidal quantum dots, the group IV 

semiconductor materials substrate Ge/Si has larger dilations and compressions in the three 

directions compared to the quantum dots formed from the group III-V substrate materials. In 

group III-V substrates, InP/AlP have higher dilations and compressions than InAs/GaAs. 
 

 
 

Figure 7. Strain Profile InP/AlP  (a) in x-direction and (b) in z-direction 
 

 

 
 

Figure 8. Hydrostatic strain for the three material systems (a) in x-direction and (b) in z-direction  
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            The hydrostatic strain, biaxial strain and strain along along x and z directions for the 

three quantum dots are shown in  figures 8 and 9 respectively. For all the three quantum dots 

the hydrostatic strain and  biaxial strain are not linear but describe a curve with a maximum 

positive value. Group IV quantum dot has a higer hydrostatic  and biaxial strain than Group 

III-V semiconductor substrate quantum dots while in group III-V material InP/AlP has higer 

values than InAs/GaAs.  

 

 

 
 

Figure 9. Biaxial strain for the three material systems (a) in x-direction and (b) in z-direction 

 

 

Figure 10. Strain along x-axis (a) in x-direction and (b) in z-direction for the three material systems 
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             Hydrostatic and biaxial strain components are positive within the quantum dots. For all 

the three types, the maximum hydrostatic and biaxial strains in x-direction occur around 

1.0 and 5  0. nm   and goes to zero around  5nm  while in z direction, the maximum 

hydrostatic strain and biaxial strain occur around 1 and 2nm  and practically goes to zero 

around 6nm. The magnitude of hydrostatic and biaxial strain are particularly high near the 

base of the quantum dot. The negative parallel strain components along x-axis
xx  are 

realtively weak compared to hydrostatic and biaxial strains (Figure 10). 

 

 

4. CONCLUSION   

 

           For the pyramidal quantum dots, the group IV semiconductor materials substrate Ge 

grown on Si and III-V semiconductor material substrates InAs grown on GaAs and InP grown 

on AlP gave the same shapes for strain profiles along x and z axes. The higher dilation or 

positive strain components for all the three substrates were normal to the substrate indicating 

that the growth process in semiconductor quantum dots takes place in z direction due to the 

body forces created by the lattice mismatch.  

           To balance this effect and retain the equilibrium by minimizing the energy, the parallel 

strain components were negative with small values near the base of the pyramid, and 

approached zero with the height of the pyramid. Interchanging the two materials of the 

semiconductor in the quantum dot, compressive strains can be obtain in the x-y plane and 

dilative strains normal to the substrate. Near the base, the forces were exerted primarily 

parallel to the substrate plane and as the substrates try to force the wetting material lattice 

constants to approach that of the substrate, compressive strains were created along the z-axis. 

For all the three quantum dots hydrostatic and biaxial strain components were positive within 

the quantum dots acting strongly near the base of the pyramid.  

           The hydrostatic strain in x-direction is mostly confined within the quantum dot and 

practically goes to zero outside the edges of the quantum dot. The negative parallel strain 

along x-axis although relatively weak penetrate more deeper to the substrate than hydrostatic 

strain. A higher resultant strain was located in the lower half of the pyramid than in the upper 

half of the pyramid, the forces acting mainly from the sides along the normal direction. The 

strain field was not confined to the pyramid alone, but extended over a large region of the 

substrate material between the pyramid and the surface indicating that there is deformation in 

the wetting material as it spread in all directions.  

           The group IV indirect gap semiconductors Ge/Si substrate gave the largest dilations 

and compressions in all the directions than the other two III-V substrate combinations even 

though it had the lowest lattice mismatch (4%). In the group III-V the strain distribution for 

direct gap InP grown on in direct gap AlP was higher than direct gap semiconductors InAs 

grown on GaAs. InAs/GaAs has a lower lattice mismatch than Inp/AlP. Therefore these 

results indicated that the movements of atoms due to the lattice mismatch were stronger for 

group III-V. The most popular material InAs/GaAs have the lowest strain than the other two 

combinations maintaining the stability.  
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