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ABSTRACT 

The paper turns the attention to the thermal problems of the solid cooling in air. The physical 
aspect of mathematic approach has been underlined. The analysis and critical evaluation of Newton’s 
Law concerning the solid air-cooling have been performed. The cognitive path leading to the solution 
is presented with the result being the body temperature dependence on time of cooling down in the air. 
Then the course of solution concerning the result of the adequate dependence of temperature of the 
cooled body on time has been presented. In the study, the stress is put on constant magnitudes which 
characterize the susceptibility of solid to the cooling in the air. In the end, the synthetic formulation of 
all functional characteristics of the thermal phenomenon discussed in the paper, have been presented.   
 
Keywords: Phenomenon of body cooling; Thermal space-time; Potential field; Time constant; Cooling 
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1. INTRODUCTION 

 
In science, there is a need to return to the sources of natural reality. It appears in many 

cases the descriptions of the nature are inadequate in their character. That means they do not 
correspond with the studied reality. In fact, they do not regard the initial conditions, 
corresponding with the beginning of the phenomenon. 

Inadequate character of the description of natural phenomena results also from a 
common tendency to linearize their courses. That means, the non-linear characteristics are 
substituted by a straight line, with the result called zero- or first approach, as noticed e.g. by 
[1]. 

Following such simplifications, lots of ways of linearizations, not justifiable from the 
scientific point of view, have been elaborated. Many of them have been presented, for 
instance in [2], and they are called as: common, harmonic, energetic, simple, balanced, 
statistic, acc. to the criterion of minimum of mean-square deviation, or acc. to the distribution 
function. 

The author of the work [3] characterizes these simplifying actions with a very strong 
remark: „It is a heresy to justify the attempts to use the linear superposition for non-linear 
systems”. The philosophy of approach to the studies of non-linear phenomena is discussed 
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there with a suggestion to consider the „black box” method; lack of non-linear logistics is also 
stressed in the paper [3]. 

Another approach concerns the linearization on the ground of Newton’s mechanics. 
Here the linear course of velocity is assumed by calling this as the uniformly variable motion, 
with the initial velocity being zero. Thus the variable motion, or by the model as uniformly 
variable, is described beginning from the second kinetic link. Then the actions were directed 
into two reverse directions. To obtain the dependence of path length on time, the velocity 
function was integrated. The differentiation, as the action reversal to integrating, resulted in 
getting the record on acceleration. Unfortunately, that acceleration appears to be constant, 
invariable; getting further magnitudes is impossible, because all of them as the consecutive 
derivatives, equal simply zero.  

The next reason for the inadequacy of the created descriptions of phenomena is 
physically unreasonable acceptance the forms of the regression functions, assuming the 
characteristics of real systems. Thus obtained the empirical (statistic-experimental) formulae 
include some constants (coefficients, power exponents), having no physical sense, proving of 
the degree of fitting of a theoretical curve only to the conglomeration of experimental points.  

Some illustration of such actions, on the ground of science, may be the attempts to 
describe the configuration of material cutting traces by means of a tool of a determined elastic 
beam: abrasive, water-abrasive, cryogenic, laser, electron, or plasma. It appears the 
descriptions of geometry of these traces are quite differentiated and still do not reflect a real 
outline/profile. There were some attempts to describe the cut-off by a parabola [4, 5]; 
logarithmic spiral [6, 7], as well as polynomial of the third degree [8, 9]. 

They are just some examples sufficiently well illustrating the considered problem of 
returning to the source. Some more examples of these quests will be delivered concerning the 
title work problem. 

 

2.  NEWTON’S LAW ON THE COOLING RATE OF A BODY IN AIR  

The well known Newton’s law, treating the rate of the body cooling down in air, will be 
considered. The rate of this phenomenon is, according to the mentioned law, directly 
proportional to the temperature difference of: a solid and air. One should mention, that law is 
the example of using a differential equation of divided variables. It is then a fine illustration in 
the area of applications of solving this type of equation. That way it was used, for instance in 
the literature [10]. 

Here is the mentioned Newton’s law: 
 

                                                      ( )0TTk
dt

dT −=−                                                         (1) 

 

where: T – body temperature, 0T  – air temperature, t – time, 
dt

dT
 – the rate of body cooling in 

the air, k – constant coefficient, dependent on the type of cooled body. 
For the illustration purposes, the equation may be written in the following form: 
 

                                ( ) kTvkTkTTTkv +=+−=−= *
000                                       (2) 
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with the symbol v denoting just the rate of body cooling, and *
0v  – initial, apparent rate of the 

phenomenon. 
It is worth characterizing closer the coefficient k. For this purpose one may formulate 

the dependence ( )Tfk = . It has the following form: 
 

                                                       
0

*
0

TT

v

T

vv
k

−
=−=                                                (3). 

 
If the temperature is given in Celsius degree [ ]Co , and the rate of body cooling 

expressed in the Celsius degree per second [ ]1−⋅ sCo , so the unit of the coefficient k will be 

[ ]1−s , that results from the operations on the mentioned component units of magnitudes, that is  
 

[ ] 1
1

−
−

=⋅= s
C

sC
k

o

o

 

 
That means, this coefficient is the gradient of the growth of cooling rate, thus possessing a 
determined physical interpretation.  

The plot of dependence (2) is the straight line (Fig. 1), with the angular coefficient k, 
resulting from the equation (3), having a positive value. Only for the coordinates 0TT = , 

0=v  that coefficient is non-determined, with the non-determination of type 0:0. The physical 
character of that dependence corresponds with the continuous line for 0TT > ; whereas the 

dashed line, in the interval ),0 0TT 〈∈ , illustrates mathematical, mathematically determined 

illustration of the course. 
 

 
Fig. 1. Indicatrisse of the dependence of body cooling rate on its temperature, acc. to the Newton’s 

Law 
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The solution of equation (1) provides the formulation of response to the question on 
what is the lapse time t* the body will be cooled down to the temperature *T , if its initial 
temperature equals 1T . Although the procedure leading to answer that question is generally 
known, it is worth presenting that here as the point of outcome to further considerations, 
directed into the source itself. 

The equation (1) may be written in the following form: 
 

                                                       kdt
TT

dT −=
− 0

                                                           (4) 

 
which, after the integrating on both sides, assumes the following configuration: 
 

                                           ( ) *
0ln CktTT +−=−                                                      (5) 

 
or 
 

                            
ktktCCkt CeeeeTT −−+− =⋅==−

**

0                                     (6). 

 
From the condition, that in the moment 0=t , the temperature 1TT = , one obtains  
 

                                                           01 TTC −=                                                              (7) 

 
therefore, after substituting (7) to (6), one obtains the next form of the equation, namely 
 

                                                   ( ) kteTTTT −−=− 010                                                 (8) 

 
and then 

                                                        
0

01ln
1

TT

TT

k
t

−
−=                                                           (9). 

 
After substituting *TT =  to the former formula, one obtains the searched time of 

cooling *t , that is   
 

                                                    
0

*
01* ln

1
TT

TT

k
t

−
−=                                                         (10) 

 
That course of temperature of the body cooled in the air (8), being the solution of the 

Newton’s law (1), has the character of exponentially decreasing curve (Fig. 2), coming out of 
the point corresponding with the initial temperature 1T  of the body. 
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Fig. 2. Course of the body temperature cooled in air, corresponding with the Newton’s Law 

 

The rate v of the body cooling, being the derivative (with the minus sign) of function (8) 

against time t, that is  
dt

dT− , has the following form: 

 

                                         
ktkt eve

k

TT

dt

dT
v −− =−=−= 1

01
                                    (11) 

 
and its graphical image (Fig. 3) is the exponentially decreasing curve, approaching the 
horizontal asymptote, placed on the time axis. 

 
Fig. 3. Course of the dependence of the body cooling rate v on temperature t of the air, acc. to the 

Newton’s Law 
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It is time now for a critical analysis of the outcome equation, which is the Newton’s 
law, described by the differential equation (1). That equation is not adequate in character, that 
affects also its solution (8), as the consequence of imperfect content of the outcome equation. 
The graphical illustration (see, Fig. 2) clearly reveals that shortcoming. One may notice, the 
temperature of cooled body approaches the air temperature, being the horizontal asymptote, 
that is for the time ∞→t  occurs 0TT → . That means, if the time t increases unlimitedly, the 

temperature T tends to a complete value, corresponding with the air temperature 0T . Thus the 

temperatures never will be equaled, and that is inconsistent with the physical nature of the 
considered phenomena. 

Hence, a return to the source is needed, which is the general outcome differential 
equation, describing the considered phenomenon of the body cooling. To say even more, that 
outcome form of the equation has a much broader application concerning any quantum 
changes of the natural reality. It is worth adding that the mentioned source form of the 
equation has been presented in [11]. There the detailed solutions of other examples of the 
technological systems are also delivered. The application of this source differential equation 
to the analytical description of the tool life under cut against the main velocity was recently 
presented in the work [12], and the kinetics of tool edge fixed flexibly was solved [13]. 

One may judge, the equation (1) has been formulated on the experimental basis only, 
may be with frequent numerous experimental points. It does not result from the analysis of the 
thermal reality/system, with the form proving of its irrelevancy. 

 

3.  THERMAL EFFECTS UNDER THE SOURCE RECOGNITION  

At the source of cognitive way of the thermal reality there is a general differential 
equation, having the following form: 

 

                                                    dt
t

T
dT

∂
∂±=                                                             (12) 

 
where the symbol dT  denotes the total differential of temperature of the cooled body, dt  − 

total differential of cooling time, 
t

T

∂
∂

 − partial derivative of temperature against time. The 

signs ( )±  are the algebraic operators, with ( )+  possessing a formal significance only, because 

it confirms the physical sense of the determined record, whereas ( )−  ascribes such a physical 
sense to the determined record. The description of the body cooling phenomenon requires 
using the operator ( )− , for the temperature course as the function of time to be positive, with 
a physical sense. 

Scheme of creation of adequate description of the dependence ( )tfT =  is presented in 
Fig. 4 showing all elements of the reasoning process. The curve illustrating that dependence 
comes out of an initial point of the coordinates 0=t , 1TT = , and further its course is 
decreasing exponentially. It completes its non-linear and real/physical course in the point 0, 
where the body cooling phenomenon has its end; then the continuous real course is invariable, 
and constant. There is also further, non-real, fictional, just a mathematical fragment of the 
non-linear course (dashed line). The need for introducing such a further fragment of the curve 
will be explained soon. 
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Fig. 4. Indicatrisse of adequate course of the dependence of temperature T of the cooled body on time t 

of its cooling 
 

Now the dependence (12) is to be integrated on both sides; one should remember that 
the total differential is the state function. The states, being the limits of integration, should be 
now determined. 

The mentioned limits of the studies are the potential fields. These fields are situated on 
two directions; one of them is the direction of changes of temperature T, and the second one is 
the direction of time t. On the first direction the following fields may be differentiated: 
temperature unstable potential field ( )TAPF , temperature stable potential field ( )TSPF  and 

the nominal potential field NPF. On the second direction there are the following fields: time 
unstable potential field tAPF )( , time stable potential field tSPF )( . The fields TAPF)( , 

TSPF)( , and tAPF )( , tSPF )(  confine the real thermal, physical space-time, as the proper 

one (dotted area); there the real, exponentially decreasing changes of temperature occur. 
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Between the fields TSPF)(  and NPF there is an improper thermal space-time, fulfilling here 
the auxiliary role (it is like an auxiliary mathematical tool). 

The temperature curve, comprised between the points 1-0, is the envelope of right-
angled triangles, moving with its horizontal leg on the nominal potential field; here this 
horizontal leg is invariable and equals the time constant Θ , whereas the vertical leg is 
changing respectively, decreasing in due measure the displacement of the triangle in the time 
direction. That nominal field is situated symmetrically against the level of the end of cooling 
phenomenon, on the distance equal to the length of space-time in the temperature direction. 

Therefore under the real/proper space-time that mentioned above, the improper space-
time is situated; there the curve (dashed line) approaches the asymptote, being that nominal 
potential field. This creation surely forms an auxiliary design, needed to describe the real 
curve, reflecting the adequate dependence of temperature of the cooled body on time. 

It is worth adding that the considered phenomenon has a quantum nature. That means 
the thermal states vary in non-continuous way, by jump, or quantum, and between the states 
(marked by determined temperatures, that is the outcome temperature 1T  of the cooled body, 

and further, the final temperature 0T  of the body, equal the air temperature) a continuous heat 

exchange takes place. Those states take place on the described above the potential fields. 
Now one may come to the integration of the equation (12). By integrating that equation, 

one should mark the limits of integrals from the total differentials. That means  
 

                                                ∫∫
Θ+∆

∆∂
∂−=

t

t

T

T

dt
t

T
dT

2

                                                        (13) 

 
and further 
 

                                                  Θ−=−
dt

dT
TT 2                                                          (14). 

 
One may notice the partial derivative has been substituted by the quotient of total 

derivatives. It could be done that way because the total differentials have been clearly 
determined by introducing the limits of the integrals. 

For comparison, it is worth presenting the equation (14) in the form corresponding with 
the form of equation (1), i.e. Newton’s law. Here is the mentioned equation: 

 

                                                 ( )2

1
TT

dt

dT −
Θ

=−                                                     (15) 

 
It may be noted, it is quite similar to the equation (1) but substantially differing in 

content. Further, more distinct differences will be revealed during solving the equation (14), 
and its solution will indicate the anomalies contents. 

Now let us determine the limits of the left integral of the equation (13) by introducing 
there the magnitudes 0T , 1T , and T∆ . Thus 
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( )

∫∫
Θ+∆

∆

∆+

+∆− ∂
∂−=

−

t

t

TT

TT

dt
t

T
dT

0

001

                                                     (16) 

 
and further 
 

                           ( ) ( ) Θ−=∆+−=∆+∆ − dt

dT
TTTTT 0101                             (17) 

 
or 
 

                                               ( ) dt
TTT

dT

Θ
−=

∆+−
1

01
                                             (18). 

 
Furthermore, by integrating the equation (18) on both sides, one obtains the result as 

follows: 
 

                                    ( )[ ] *
01

1
ln CtTTT +

Θ
−=∆+−                                              (19) 

 
or 
 

                        ( ) Θ
−

Θ
−+

Θ
−

=⋅==∆+−
tt

C
C

t

CeeeeTTT
*

*

01                              (20). 

 
After considering that for 0=t , the magnitude 01 TTT −=∆ , one obtains 

 

                                                     ( )012 TTC −=                                                            (21) 

 
and after substituting (21) to (20), and then after considering that 0TTT −=∆  

 

                                        ( ) 









−−+= Θ

−
12010

t

eTTTT                                           (22). 

 
The plot of the function (22) is the decreasing exponential curve (see Fig. 4). The 

segment of this plot (solid line), reflecting the illustration of the real phenomenon, runs 
through the real/physical thermal space-time. It terminates its variable course on the stable 
temperature potential field ( )TSPF , where further it keeps its energetic state. That means that 

for 0tt ≥  the temperature 0TT =  of the cooled body appears to be equal to the air temperature. 
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4.  ANALYSIS OF THE DETAILED ADEQUATE DEPENDENCE OF THE COOLED 
 BODY TEMPERATURE ON TIME OF COOLING 

 
In the frameworks of the analysis of equation (22) one should first determine the time 

0t , corresponding with the temperature 0T  of the air; the temperature must be achieved by the 

body cooling until the cooling phenomenon is completed. Both these coordinates ( )00,Tt  

determine the position of the final point of the curve ( )tfT = , existing on the temperature 

stable potential field ( )TSPF .  

Therefore 0T  should be substituted instead of the variable T, and 0t  in the place of t. 

Furthermore, after performing some simple algebraic operations, one obtains 
 

                                                          2ln0 Θ=t                                                               (23) 

 
The rate v of the body cooling, as the first (first order) derivative of the temperature T 

against time t, may be determined.  
Here is the mathematic configuration: 
 

                                   
( ) Θ

−
Θ

−
=

Θ
−=−=

tt

eve
TT

dt

dT
v 1

012
                                      (24) 

 
The coordinates of the final points of the curve of this magnitude, situated on ( )TAPF  

and ( )TSPF , are determined by substituting 0=t , and then 2ln0 Θ== tt  to (24). After doing 

that operation, one obtains 
 

                                                   
( )

Θ
−= 01

1

2 TT
v                                                           (25) 

 

                                                    Θ
−== 011

0 2
TTv

v                                                         (26). 

 
The image of the dependence ( )tfv =  is the decreasing exponential curve (Fig. 5), 

approaching the horizontal asymptote, positioned on the time axis of the coordination system 
tT0 .  

The real variable course of the body cooling rate takes place for 00 tt ≤≤ , and further 

(for 0>t ) that magnitude assumes the zero value.  
That means the temperature of the body and air is common, and invariable, constant 

(see Fig. 4)  in this time variability interval.  
From the mathematic point of view the derivative of temperature against time is reduced 

to zero. 
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Fig. 5. Graphical image of the adequate dependence of body cooling rate on time of the phenomenon 

lasting 
 

For comparative purposes, now it is worth presenting the form of dependence of the 
cooling rate v on temperature T of the cooled body. Therefore, first the numerator of the 
formula (24) was determined, by expressing it as the function of T , based on the dependence 
(22), to obtain  

 

                                        ( ) 0101 22 TTTeTT
t

−+=− Θ
−

                                            (27) 

 
Then, by substituting it to (24), one finally obtains 
 

                                                T
TT

v
Θ

=
Θ
−= 12 01

                                                      (28) 

 
or 
 

                                              kTv
dt

dT
v +=−= *

0                                                       (29) 
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where *
0v  denotes an apparent, non-real initial velocity (negative as to its value), and k – 

directional constant (directional coefficient), with the unit of the first magnitude being 
1−⋅ sCo , whereas 1−s  of the second one. 
The graphic illustration of that dependence (Fig. 6) shows that it is a straight line, with 

the directional coefficient 1−Θ=k  being positive. The solid line denotes the real course of the 
rate, whereas the dashed line determines the apparent (mathematically) positioning of that 
magnitude. Thus it is physically determined only in the interval 〉〈∈ 10,TTT . 

 
Fig. 6. Indicative adequate dependence of the cooling rate of a body on its temperature 

 

For the terminal values of this interval, the corresponding rates 0v , 1v  may be 

determined by substituting these two pairs of magnitudes, i.e. 00,Tv  and 11,Tv  to the equation 

(28). It is obtained through the following: 
 

                                 Θ
−=

Θ
+

Θ
−= 01

0
01

0

12 TT
T

TT
v                                                (30) 

 

                                
( )

Θ
−=

Θ
+

Θ
−= 01

1
01

1

212 TT
T

TT
v                                             (31). 
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Thus the adequate equation of the considered phenomenon should possess the following 
form: 

 

                                             ( )00 TTkvv −+=                                                         (32) 

 
where 
 

                                                          
01

01

TT

vv
k

−
−=                                                              (33). 

 
Taking into account (33) and (30) in the formula (32), one obtains the dependence 
( )Tfv =  relating to all parametric characteristics of the phenomenon. Therefore 
 

                                      ( )0
01

0101 TT
TT

vvTT
v −

−
−+

Θ
−=                                                 (34) 

 
It appears now, there are the essential differences between the existent and those new 

descriptions of the analysed system. The new descriptions of this thermal phenomenon (body 
cooling in the air) possess the adequate character, which has not been visible in the existent 
outcome interpretation version (Newton’s law) and its developments. 

All these differences result from the fact that the phenomenon of body cooling was 
described on different cognitive  st ages. The adequate, presented in this work, description took 
its beginning at the very source. This is why it has a proper form and the contents. It is worth 
noting the determination of real variability interval of such magnitudes like the temperature of 
the cooled body and the cooling rate. It has been also discovered that the final cooling rate is 
not equal to zero, but possesses a determined value, equal to the half of the initial rate, which 
possesses the cooled body. Coming to some important conclusion, one should note, the 
infinitely lasting of the body cooling phenomenon, presented in the existent records, is not 
possible.  

 

5.  CONCLUSION 

In the conclusion it should be underlined the essential significance of the source 
differential equation.  It is a starting point to the adequate description of the phenomenon of 
body cooling in the air. The solution of such an equation refers to the real thermal space-time, 
limited by the real potential fields. The air temperature, determining the position of one of 
these fields, is not an asymptote, the fact that takes place in the Newton’s model, thus 
suggesting the body may be cooled down (assuming the air temperature) not earlier than after 
an infinitely long time. 

In summing up the work, it is worth comparing all functional characteristics of the 
phenomenon of solid cooling in the air in the way it is possible to compare these adequate 
with the Newton’s law and the characteristics derived on its basis. That comparison has been 
tabulated (Table 1), with the columns presenting the characteristics of type ( )tfT = , 

( )tfv = , and ( )Tfv = : adequate and non-adequate in character, that is non-corresponding 
with the described thermal phenomenon. The thick line is used for the area covering the 
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Newton’s law; it was the inspiration for the consideration of the presented work with the 
solution leading to obtain the adequate solutions of the subject problem. 

 
Table 1. Comparison of adequate and inadequate descriptions of the phenomenon of solid cooling in 

the air 

 
 

Amongst all the characteristics, the functional (Table 2) and parametric ones (Table 3) 
have been separated. The parametric characteristics are: time constant Θ , determined from 
the formula (23), that is 

 

                                                              2ln
0t=Θ                                                                (35) 

 
the final cooling rate 0v , determined by the formula (3), as well as the initial cooling rate 1v , 

covered in the formula (31). 

Table 2. Functional characteristics of the phenomenon of solid cooling in the air 
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Table 3. Parametric characteristics of the phenomenon of solid cooling in the air 

 
 

The contents’ analysis of the two former Tables indicates that only three parameters: 
entrance parameter, being the initial body temperature, that is 1T ; two exit/outcome 

parameters, being the time, completed cooling time 0t  and the final body temperature 0T  are 

needed to describe the entire phenomenon of body cooling. 
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