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ABSTRACT

The paper turns the attention to the thermal problems of the gmbling in air. The physical
aspect of mathematic approach has been underlined. The aaalysistical evaluation of Newton'’s
Law concerning the solid air-cooling have been performed. The cagpiith leading to the solution
is presented with the result being the body temperature dependenme oif ¢ooling down in the air.
Then the course of solution concerning the result of the adedependence of temperature of the
cooled body on time has been presented. In the study, the stressiisqouistant magnitudes which
characterize the susceptibility of solid to the cooling indineln the end, the synthetic formulation of
all functional characteristics of the thermal phenomenon discussedpagbe have been presented.

Keywords. Phenomenon of body cooling; Thermal space-time; Potentia] Tiette constant; Cooling
rate; Temperature; Time

1. INTRODUCTION

In science, there is a need to return to the sources of hegaligy. It appears in many
cases the descriptions of the nature are inadequate in theictehafdat means they do not
correspond with the studied reality. In fact, they do not regard thial icibnditions,
corresponding with the beginning of the phenomenon.

Inadequate character of the description of natural phenomendsredsd from a
common tendency to linearize their courses. That means, the nandhmacteristics are
substituted by a straight line, with the result called zerdistrapproach, as noticed e.g. by
[1].

Following such simplifications, lots of ways of linearizations, nstifiable from the
scientific point of view, have been elaborated. Many of them Hmen presented, for
instance in [2], and they are called as: common, harmonic, energi@tigle, balanced,
statistic, acc. to the criterion of minimum of mean-square demiabdr acc. to the distribution
function.

The author of the work [3] characterizes these simplifyingoastiwith a very strong
remark: |t is a heresy to justify the attempts to use the linear superposition for non-linear
systems’. The philosophy of approach to the studies of non-linear phenomenscisssied
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there with a suggestion to consider the ,black box” method; lack of non-loggstics is also
stressed in the paper [3].

Another approach concerns the linearization on the ground of Newtonisanies.
Here the linear course of velocity is assumed by calhigyas the uniformly variable motion,
with the initial velocity being zero. Thus the variable motion, oth®y model as uniformly
variable, is described beginning from the second kinetic link. Tinemctions were directed
into two reverse directions. To obtain the dependence of path lengtmenthe velocity
function was integrated. The differentiation, as the action reversategrating, resulted in
getting the record on acceleration. Unfortunately, that accelerappears to be constant,
invariable; getting further magnitudes is impossible, because #fleai as the consecutive
derivatives, equal simply zero.

The next reason for the inadequacy of the created descriptions of prenom
physically unreasonable acceptance the forms of the regrefssiotions, assuming the
characteristics of real systems. Thus obtained the emp{sitzdistic-experimental) formulae
include some constants (coefficients, power exponents), having nogrsense, proving of
the degree of fitting of a theoretical curve only to the conglomeration ofisxgeal points.

Some illustration of such actions, on the ground of science, may battémepts to
describe the configuration of material cutting traces by mebagool of a determined elastic
beam: abrasive, water-abrasive, cryogenic, laser, electron, asmal It appears the
descriptions of geometry of these traces are quite differedtetd still do not reflect a real
outline/profile. There were some attempts to describe theftuiyoa parabola [4, 5];
logarithmic spiral [6, 7], as well as polynomial of the third degree [8, 9].

They are just some examples sufficiently well illustratihg considered problem of
returning to the source. Some more examples of these quedie welivered concerning the
title work problem.

2. NEWTON'S LAW ON THE COOLING RATE OF A BODY IN AIR

The well known Newton’s law, treating the rate of the bodyingadown in air, will be
considered. The rate of this phenomenon is, according to the mentionedlitaatly
proportional to the temperature difference of: a solid and air. Ongdshreention, that law is
the example of using a differential equation of divided variables. It isalfiee illustration in
the area of applications of solving this type of equation. That tmags used, for instance in
the literature [10].

Here is the mentioned Newton'’s law:

_dT _

o (T-T,) 1)

where:T — body temperaturdl,, — air temperaturd,— time,?j—l_ — the rate of body cooling in

the air,k — constant coefficient, dependent on the type of cooled body.
For the illustration purposes, the equation may be written in the following form:

v=Kk(T =T,)= KT, + KT =V, + KT @)
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with the symbol denoting just the rate of body cooling, avid- initial, apparent rate of the

phenomenon.
It is worth characterizing closer the coefficidntFor this purpose one may formulate
the dependenck = f(T). It has the following form:

VEAVA v

k = =
T T-T, )

If the temperature is given in Celsius deg@@], and the rate of body cooling
expressed in the Celsius degree per secl&ﬁ(ﬂfs‘lj, so the unit of the coefficiett will be
[s‘lj, that results from the operations on the mentioned component units of magnitudes, that is

0 -1
k] = % =s*

That means, this coefficient is the gradient of the growth ofirtgpahte, thus possessing a
determined physical interpretation.

The plot of dependence (2) is the straight liRgy(1), with the angular coefficierk,
resulting from the equation (3), having a positive value. Only forctwdinatesT =T,
v =0 that coefficient is non-determined, with the non-determinatiogpe 0:0. The physical
character of that dependence corresponds with the continuous life>fdg; whereas the

dashed line, in the interval (0, T, , )llustrates mathematical, mathematically determined
illustration of the course.

V= k{T—TrJ}

vkt o

Fig. 1 Indicatrisse of the dependence of body cooling rate on its temperature, thecNewton’s
Law
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The solution of equation (1) provides the formulation of response to théogques
what is the lapse time the body will be cooled down to the temperatiife if its initial
temperature equal$,. Although the procedure leading to answer that question is generally

known, it is worth presenting that here as the point of outcome to furtimsiderations,
directed into the source itself.
The equation (1) may be written in the following form:

dar
o =kt @

0

which, after the integrating on both sides, assumes the following configuration:
In(T-T,)=-kt+C )
or
T _TO - e_kHC — eC E_kt — Ce_kt (6).

From the condition, that in the moment O, the temperatur@ =T, one obtains

C=T-T, (7)
therefore, after substituting (7) to (6), one obtains the next form of the equation, namely
T-T,= (Tl —Tq )e_kt (8)
and then
0

After substituting T =T  to the former formula, one obtains the searched time of
coolingt’, that is

.1, T-T,
RS (10)

That course of temperature of the body cooled in the air (8), beéngolution of the
Newton’s law (1), has the character of exponentially decrgasirve Fig. 2), coming out of

the point corresponding with the initial temperatiijef the body.
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Fig. 2. Course of the body temperature cooled in air, corresponding with the New#awn's L

The ratev of the body cooling, being the derivative (with the minus signlioction (8)

against timd, that is - %—I , has the following form:

- = e =ve
dt K 1 (11)

and its graphical imageFig. 3) is the exponentially decreasing curve, approaching the
horizontal asymptote, placed on the time axis.

Fig. 3. Course of the dependence of the body coolingwatetemperatureof the air, acc. to the
Newton’s Law
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It is time now for a critical analysis of the outcome equatiomchvis the Newton’s
law, described by the differential equation (1). That equation iadexuate in character, that
affects also its solution (8), as the consequence of impedatént of the outcome equation.
The graphical illustration (see, Fig. 2) clearly reveals shattcoming. One may notice, the
temperature of cooled body approaches the air temperature, beihgriib@ntal asymptote,
that is for the time — o occursT - T,. That means, if the timeincreases unlimitedly, the

temperaturd tends to a complete value, corresponding with the air tenupergt. Thus the

temperatures never will be equaled, and that is inconsistent witphgfsécal nature of the
considered phenomena.

Hence, a return to the source is needed, which is the gemdmme differential
equation, describing the considered phenomenon of the body cooling. To sayp@es that
outcome form of the equation has a much broader application concerninguantum
changes of the natural reality. It is worth adding that the ioveed source form of the
equation has been presented in [11]. There the detailed solutions okx#meples of the
technological systems are also delivered. The application o&thirce differential equation
to the analytical description of the tool life under cut agaimstmain velocity was recently
presented in the work [12], atlde kinetics of tool edge fixed flexibly was solved [13].

One may judge, the equation (1) has been formulated on the experibesisabnly,
may be with frequent numerous experimental points. It does not result from lymsaofthe
thermal reality/system, with the form proving of its irrelevancy.

3. THERMAL EFFECTS UNDER THE SOURCE RECOGNITION

At the source of cognitive way of the thermal reality thisr@ general differential
equation, having the following form:

_,aT
dT =+t 2)

where the symbotT denotes the total differential of temperature of the cooled bdtdy,

total differential of cooling time,aa—-[ — partial derivative of temperature against time. The

signs(i) are the algebraic operators, w(th) possessing a formal significance only, because
it confirms the physical sense of the determined record, whéréeaesscribes such a physical
sense to the determined record. The description of the body cgdlergomenon requires
using the operato(—), for the temperature course as the function of time to be posititre
a physical sense.

Scheme of creation of adequate description of the depend’eno‘e(t) is presented in
Fig. 4 showing all elements of the reasoning process. The curveatingt that dependence
comes out of an initial point of the coordinates 0, T =T, and further its course is

decreasing exponentially. It completes its non-linear and realfzt course in the point O,
where the body cooling phenomenon has its end; then the continuous realicawariable,
and constant. There is also further, non-real, fictional, just a matlvainfragment of the
non-linear course (dashed line). The need for introducing such arfiregment of the curve
will be explained soon.
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o
T=Ty+(T1-To)(2e ©-1) for Ogt=te

T=Tg for t>tg
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Fig. 4. Indicatrisse of adequate course of the dependence of tempérafute cooled body on timte
of its cooling

Now the dependence (12) is to be integrated on both sides; one shoeitdbemnthat
the total differential is the state function. The states, bi@dimits of integration, should be
now determined.

The mentioned limits of the studies are the potential fields. Tiedds are situated on
two directions; one of them is the direction of changes of temysefB and the second one is
the direction of timet. On the first direction the following fields may be differetdd
temperature unstable potential fieffdPF ), , temperature stable potential fie{8F), and
the nominal potential fieltlPF. On the second direction there are the following fields: time
unstable potential field APF),, time stable potential fieldSPF),. The fields (APF),,

(SPF);, and (APF),, (SPF), confine the real thermal, physical space-time, as the proper
one (dotted area); there the real, exponentially decreasing shahgemperature occur.

7
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Between the field{SPF), andNPF there is an improper thermal space-time, fulfilling here

the auxiliary role (it is like an auxiliary mathematical tool).

The temperature curve, comprised between the points 1-0, is themal right-
angled triangles, moving with its horizontal leg on the nominal patefield; here this
horizontal leg is invariable and equals the time constantwhereas the vertical leg is
changing respectively, decreasing in due measure the disglacefrthe triangle in the time
direction. That nominal field is situated symmetrically agaihstlevel of the end of cooling
phenomenon, on the distance equal to the length of space-time in the temperatuva.direct

Therefore under the real/proper space-time that mentioned above)ptopeér space-
time is situated; there the curve (dashed line) approachesyhgpiate, being that nominal
potential field. This creation surely forms an auxiliary desigreded to describe the real
curve, reflecting the adequate dependence of temperature of the cooled body on time

It is worth adding that the considered phenomenon has a quantum naafrenélans
the thermal states vary in non-continuous way, by jump, or quantum, ameebethe states

(marked by determined temperatures, that is the outcome teorpefabf the cooled body,
and further, the final temperatufie of the body, equal the air temperature) a continuous heat
exchange takes place. Those states take place on the described above thefbdsntial

Now one may come to the integration of the equation (12). By integrttat equation,
one should mark the limits of integrals from the total differentials. Thahsnea

T At+O
oT
dT =—— | dt

13

{ ot i (13)
and further
. dT

T-T,= __dt © (14).

One may notice the partial derivative has been substitutethéoyuotient of total
derivatives. It could be done that way because the total diffeertfimle been clearly
determined by introducing the limits of the integrals.

For comparison, it is worth presenting the equation (14) in the forresponding with
the form of equation (1), i.e. Newton’s law. Here is the mentioned equation:

dT _ 1

E_E(T_TZ) (15)

It may be noted, it is quite similar to the equation (1) but subalgndiffering in
content. Further, more distinct differences will be revealed dwahgng the equation (14),
and its solution will indicate the anomalies contents.

Now let us determine the limits of the left integral of dmgiation (13) by introducing

there the magnitudel,, T,, andAT . Thus
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Ty +AT At+0O
far =—%—T [ dt 16
~(aT )1+ To t At
and further
(AT), , +AT =(T,-T,)+ AT --9Tg
1-0 1 0 dt @7
or
dT __1 dt -
(T.-T,)+AT © :

Furthermore, by integrating the equation (18) on both sides, one olitaimssult as
follows:

1 .
In[(T, -T,)+AT] = —6t +C (19)

or

c’

_ty .t
(,-T,)+AT=e® =€ [@°=Ce (20).

After considering that fot =0, the magnitudeAT =T, —T,, one obtains
C= 2(T1 _To) (21)
and after substituting (21) to (20), and then after consideringMhat T —T,

T=T,+(T,-T,) 2¢e ° -1 22

The plot of the function (22) is the decreasing exponential curveHigeet). The
segment of this plot (solid line), reflecting the illustrationtloé real phenomenon, runs
through the real/physical thermal space-time. It terminégegariable course on the stable
temperature potential fieIéSPF)T, where further it keeps its energetic state. That means that

for t > t, the temperaturd@ =T, of the cooled body appears to be equal to the air temperature.
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4. ANALYSIS OF THE DETAILED ADEQUATE DEPENDENCE OF THE COOLED
BODY TEMPERATURE ON TIME OF COOLING

In the frameworks of the analysis of equation (22) one should fitstrdime the time
t,, corresponding with the temperatufg of the air; the temperature must be achieved by the

body cooling until the cooling phenomenon is completed. Both these coord(lt}g@#
determine the position of the final point of the cuives f(t), existing on the temperature
stable potential fieldSPF ) .

ThereforeT, should be substituted instead of the variabl@ndt, in the place of.
Furthermore, after performing some simple algebraic operations, one obtains

t,=0In2 (23)

The ratev of the body cooling, as the first (first order) derivative of tdraperaturerl
against timd, may be determined.
Here is the mathematic configuration:

__dr _2(T,-T,)
it O

t t
0 —ya ©
e~ =Vve (24)

The coordinates of the final points of the curve of this magnitutiestedl on(APF ),
and (SPF)T , are determined by substituting- 0, and thent =t, =©In 2to (24). After doing
that operation, one obtains

V. = 2(T1 _To)
1 o (25)
T —

T
©

[

—_ Vl —_
Vo = 5" (26).

The image of the dependenee= f(t) is the decreasing exponential cunrg( 5),
approaching the horizontal asymptote, positioned on the time axis cddhdination system
OtT .

The real variable course of the body cooling rate takes placeégar<t,, and further

(for t >0) that magnitude assumes the zero value.

That means the temperature of the body and air is common, and irejadabstant
(see Fig. 4) in this time variability interval.

From the mathematic point of view the derivative of temperature agairmsistirmduced
to zero.

10
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I e v R
v=ve= I[E! ~e © for Ogtgt,

v=0 for t>t,

Fig. 5. Graphical image of the adequate dependence of body cooling rate on time of the phenomenon
lasting

For comparative purposes, now it is worth presenting the form oindepee of the
cooling ratev on temperaturd of the cooled body. Therefore, first the numerator of the
formula (24) was determined, by expressing it as the functidn, dased on the dependence
(22), to obtain

_t
2(T,-T,)e® =T +T,-2T, 27)

Then, by substituting it to (24), one finally obtains

_L-21, _ 1
"o o @
or
dr _ .
A @)

11
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where v, denotes an apparent, non-real initial velocity (negative as telite), andk —
directional constant (directional coefficient), with the unit of firat magnitude being
°C 3™, whereass™ of the second one.

The graphic illustration of that dependentE&(6) shows that it is a straight line, with
the directional coefficienk = @™ being positive. The solid line denotes the real course of the
rate, whereas the dashed line determines the apparent (mithéygpositioning of that
magnitude. Thus it is physically determined only in the intefviakT,,T,) .

Fig. 6. Indicative adequate dependence of the cooling rate of a body on its tengperatur

For the terminal values of this interval, the corresponding ragesv, may be

determined by substituting these two pairs of magnitudesy,i.€ andv,, T, to the equation
(28). It is obtained through the following:

Vv :T1_2To +£T _Nh-T

"7 "o e @0

:T1_2To+ 1-|- :2(T1_To)

1 o o 1 o (32).

12
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Thus the adequate equation of the considered phenomenon should possess thg follow
form:

v=y, +k(T -T,) (32)
where
_Vi™V%

Taking into account (33) and (30) in the formula (32), one obtains the dependence
V= f(T) relating to all parametric characteristics of the phenomenon. Therefore

:Tl_TO + Vi™V%

T-T,

o T1 _TO ( o) (34)
It appears now, there are the essential differences betieerxistent and those new

descriptions of the analysed system. The new descriptions ohénedl phenomenon (body

cooling in the air) possess the adequate character, which hasamvisible in the existent

outcome interpretation version (Newton’s law) and its developments.

All these differences result from the fact that the phenomendmody cooling was
described on different cognitive The adequate, presented in this work, description took
its beginning at the very source. This is why it has a prigger and the contents. It is worth
noting the determination of real variability interval of such mtagias like the temperature of
the cooled body and the cooling rate. It has been also discover¢hetietal cooling rate is
not equal to zero, but possesses a determined value, equal to thiethalinitial rate, which
possesses the cooled body. Coming to some important conclusion, one shoulthenote,
infinitely lasting of the body cooling phenomenon, presented in théeakisecords, is not
possible.

5. CONCLUSION

In the conclusion it should be underlined the essential significahdie source
differential equation. It is a starting point to the adequaterigésn of the phenomenon of
body cooling in the air. The solution of such an equation refers teahéermal space-time,
limited by the real potential fields. The air temperature, rdeteng the position of one of
these fields, is not an asymptote, the fact that takes pladeeimNéwton’s model, thus
suggesting the body may be cooled down (assuming the air tempenatuearlier than after
an infinitely long time.

In summing up the work, it is worth comparing all functional chargstics of the
phenomenon of solid cooling in the air in the way it is possible tgpaoenthese adequate
with the Newton’s law and the characteristics derived on itsb@kat comparison has been

tabulated Table 1), with the columns presenting the characteristics of tSFpef(t),
v=f(t), and v=f(T): adequate and non-adequate in character, that is non-corresponding
with the described thermal phenomenon. The thick line is used forrélecavering the

13
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Newton’s law; it was the inspiration for the consideration of ghesented work with the
solution leading to obtain the adequate solutions of the subject problem.

Table 1. Comparison of adequate and inadequate descriptions of the phenomenon of salidirtooli
the air

t
: =i 6 _
=f(t) T=To+(T1 TU)(ZG 1) for 0<t<te T=To+(T1-To)e~ Kt
T=T0 for tEto

- 3
v=v,;e "==——¢ for 0<t<to —kt T, —kt
V=f(t) B8 V=V;e =Me

v=Vo+k(T1-To) = =T 4 Vl__vo
v=F(T) . 8 Ti-To v=K(T-To)

for T[] STSTl

Amongst all the characteristics, the functiongdl§le 2) and parametric one3dble 3
have been separated. The parametric characteristicsnagecanstant®, determined from
the formula (23), that is

1
© —ﬁ (35)

the final cooling ratev,, determined by the formula (3), as well as the initial coalatg v,
covered in the formula (31).

Table 2. Functional characteristics of the phenomenon of solid cooling in the air

.7
T=Tg+(T1_T[]}(2'e 8_1) O<tsto
T=f(t)
T=T[] t21te
i t
v=Vi€ a=2(T1—;ﬁ)e—€ 0<£t<t,
v =f(t)
v=0 t>1t
v =vork(Ti= To) = 1510 + “\rfi__vg'g To<T<T,
v =f(T] Vi= Vg T=To

14
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Table 3 Parametric characteristics of the phenomenon of solid cooling @irthe

to

“In2

_h—Ta A T~y

2(T.-T -
- (15 D) =2(T1 BT[}) |n2

The contents’ analysis of the two former Tables indicatesahigt three parameters:
entrance parameter, being the initial body temperature, thak ;istwo exit/outcome

parameters, being the time, completed cooling tignand the final body temperatuilg are
needed to describe the entire phenomenon of body cooling.
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