PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Układ napędowy elektrycznego pojazdu miejskiego z hybrydowym bateryjno-ultrakondensatorowym magazynem energii

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
An electric vehicle powertrain with a hybrid battery and ultracapacitor energy storage for urban areas
Języki publikacji
PL
Abstrakty
EN
This paper presents a four-motor drive system designed within the frame of ECO-Mobility Project (ECO-Car subtask). A flexible non-mobile experimental set-up with an ultracapacitor energy storage for 2WD electric car powertrains testing is under development. Proposed topology with an active grid converter will allow to simulate electrochemical battery with any desired characteristics. This in turn will enable various experiment scenarios in terms of battery cells quality, wear level and thermal conditions. Our next target is to design a powertrain (power converters and controllers) for a mobile mockup, incl. an auxiliary energy storage and a converter that interfaces a LiFePO4 battery pack. A control strategy for the hybrid onboard energy storage is presented in detail. Some decisions concerning system functionality are discussed. A mobile mockup is also under construction. The proposed vehicle has been designed as a city car suitable equally for disabled, elderly and fit people.
Rocznik
Tom
Strony
13--20
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
  • Politechnika Warszawska, Wydział Elektryczny, Instytut Sterowania i Elektroniki Przemysłowej, lmg@isep.pw.edu.pl
Bibliografia
  • [1]. Ombach G., Junak J.: Kierunki rozwoju napędów elektrycznych w samochodach osobowych w zakresie mocy do 10kW. Zeszyty Problemowe Maszyny Elektryczne nr 91, 2011, wyd. BOBRME KOMEL, s. 163-169.
  • [2]. Tomic J., Kempton W.: Using fleets of electricdrive vehicles for grid. Journal of Power Sources, vol. 168, ELSEVIER 2007, s. 459-468.
  • [3]. Ota Y., Taniguchi H., Nakajima T., Liyanage K. M., Baba J., Yokoyama A.: Autonomous Distributed V2G (Vehicle-to-Grid) Satisfying Scheduled Charging. IEEE Transactions on Smart Grid, vol.3, no.1, pp.559-564, March 2012.
  • [4]. Rudnicki T.: Pojazdy z silnikami elektrycznymi. Zeszyty Problemowe Maszyny Elektryczne nr 80, 2008, wyd. BOBRME KOMEL, s. 245-250.
  • [5]. www.electricmobility.pl.
  • [6]. Fice M., Setlak R.: Napęd hybrydowy pojazdów miejskich z podwójnym zasobnikiem energii elektrycznej. Zeszyty Problemowe Maszyny Elektryczne nr 79, 2008, wyd. BOBRME KOMEL, s. 139-144.
  • [7]. www.solarisbus.pl/hybrid.html.
  • [8]. www.betterplace.com/the-solution-switchstations.
  • [9]. Michalczuk M., Grzesiak L., Ufnalski B.: A lithium battery and ultracapacitor hybrid energy source for an urban electric vehicle. X Konferencja Naukowa Sterowanie w Energoelektronice i Napędzie Elektrycznym, SENE, Łódź 2011.
  • [10]. Dębowski L.: Elastyczny system sterowania przekształtników energoelektronicznych – architektura, wybrane zastosowania badawcze i dydaktyczne. Przegląd Elektrotechniczny, nr 2, 2010, s. 125-130.
  • [11]. Fulton L.: Technology roadmap: electric and plug-in hybrid electric vehicles. International Energy Agency www.iea.org, updated June 2011.
  • [12]. Jiayuan W., Zechang S., Xuezhe W.: Performance and Characteristic Research in LiFePO4 Battery for Electric Vehicle Applications. IEEE Vehicle Power and Propulsion Conference, VPPC, 2009, s. 1657 – 1661.
  • [13]. Gao L., Liu S., Dougal R. A.: Dynamic lithium-ion battery model for system simulation, IEEE Transactions on Components and Packaging, vol. 25 2002, s. 495–505.
  • [14]. Marongiu A., Damiano A., Heuer M.: Experimental analysis of lithium iron phosphate battery performances. IEEE International Symposium on Industrial Electronic, 2010, s. 3420 – 3424.
  • [15]. Zhang Y., Chao-Yang W., Tang X.: Cycling degradation of an automotive LiFePO4 lithium-ion battery. Journal of Power Sources, nr 196, 2011, s. 1513–1520.
  • [16]. Erdinc O., Vural B., Uzunoglu M.: A dynamic lithium-ion battery model considering the effects of temperature and capacity fading. International Conference on Clean Electrical Power, 2009, s. 383 – 386.
  • [17]. Wanga J., Liua P., Hicks-Garnera J., Shermana E., Soukiaziana S., Verbruggeb M., Tatariab M., Musserc J., Finamorec P.: Cycle-life model for graphite-LiFePO4 cells. Journal of Power Sources nr 196, 2011, s. 3942–3948.
  • [18]. Kohler T. P., Buecherl D., Herzog H.-G.: Investigation of Control Strategies for Hybrid Energy Storage Systems in Hybrid Electric Vehicles. IEEE Vehicle Power and Propulsion Conference, VPPC, 2009.
  • [19]. Lukic S. M., Wirasingha S. G., Rodriguez F., Cao J., Emadi A.: Power Management of an Ultracapacitor/ Battery Hybrid Energy Storage System in an HEV. IEEE Vehicle Power and Propulsion Conference, VPPC, 2006.
  • [20]. Kuperman A., Aharon I.: Battery–ultracapacitor hybrids for pulsed current loads: A review. Renewable and Sustainable Energy Reviews 15, 2011, s. 981–992.
  • [21]. Khaligh A., Zhihao Li: Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. IEEE Transactions On Vehicular Technology, Vol. 59, No. 6, July 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS4-0002-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.