Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An automated procedure based on evolutionary computation and Finite Element Analysis (FEA) is proposed to synthesize the optimal distribution of nanoparticles (NPs) in multi-site injection for a Magnetic Fluid Hyperthermia (MFH) therapy. Evolution Strategy and Non dominated Sorting Genetic Algorithm (NSGA) are used as optimization procedures coupled with a Finite Element computation tool.
Czasopismo
Rocznik
Tom
Strony
57--67
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
autor
autor
autor
- Departament of Electrical Engineering, University of Pavia via Ferrata, Italy, paolo.dibarba@unipv.it
Bibliografia
- 1. Goya G.F., Grazú V., Ibarra M.R., Magnetic Nanoparticles for Cancer Therapy. Curr. Nanosc. 4: 1-16 (2008).
- 2. Rosensweig R.E., Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mat., pp. 370-374 (2002).
- 3. Gneveckow U., Jordan A., Scholz Volker Brüß R. et al., Description and characterization of the novel hyperthermia and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia. Med. Phys. 31(6): 1444-1451 (2004).
- 4. Di Barba P., Dughiero F., Sieni E., Magnetic field synthesis in the design of inductors for magnetic fluid hyperthermia. IEEE Trans on Magn. 46: 2931-2934 (2010).
- 5. Di Barba P., Dughiero F., Trevisan F., Optimization of the Loney’s solenoid through Quasi-analytical strategies,: a benchmark problem reconsidered. IEEE Trans. Magn. 33: 1864-1867 (1997).
- 6. Moroz P., Jones S.K., Gray B.N., Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperthermia 18(4): 267-284 (2002).
- 7. Curley S.A., New Approaches to the Treatment of Hepatic Malignancies. Radiofrequency Ablation of Malignant Liver Tumors. Annals of Surgical Oncology 10(4): 338-347 (2003).
- 8. Candeo A., Dughiero F., Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles. IEEE Trans. Magn. 45: 1654-1657 (2009).
- 9. Salloum M., Ma R., Zhu L., Enhancements in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern. Int. J. of Hyperthermia 25 (2009).
- 10. M. Salloum, R. Ma, L. Zhu, An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. Int. J. Hyperth. 24: 589-601 (2008).
- 11. Di Barba P., Dughiero F., Sieni E., Candeo E.A., Coupled Field Synthesis in Magnetic Fluid Hyperthermia. Magnetics, IEEE Transactions on 47(5): 914-917 (2010).
- 12. Di Barba P., Multiobjective Shape Design in Electricity and Magnetism. Springer (2010).
- 13. Di Barba P., Palka R., Optimization of the HTSC-PM Interaction in Magnetic Bearings by a Multiobjective Design. Proc. Int Symp. Electromagnetic Fields in Mechatronics, Electrical and Electronic Eng. pp. 94-95 (2007).
- 14. Di Barba P., Mognaschi M.E., Palka R., Savini A., Optimization of the MIT Field Exciter by a Multiobjective Design. IEEE Trans. Magn. 45(3): 1530-1533 (2009).
- 15. Binns K.J., Lawrenson P.J., Trowbridge C.W., The Analytical and Numerical Solution of Electric and Magnetic Fields. Wiley & Sons Ltd, Chichester (1992).
- 16. Carslaw H.S., Jaeger J.C., Conduction of heat in solids. Clarendon Press, Oxford (1959).
- 17. Pennes H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 85: 5-34 (1948).
- 18. Preston T.W., Reece A.B.J., Solution of 3-Dimensional eddy current problems: the T-Ω method. IEEE Trans. Magn. 18: 486-491 (1982).
- 19. Biro O., Preis K., Vrisk G., Richter K.R., Ticar I., Computation of 3-D magnetostatic fields using a reduced scalar potential. IEEE Trans. Magn. 29: 1329-1332 (1993).
- 20. www.cedrat.com (last visited January 2012).
- 21.] Lang J., Erdmann B., Seebass M., Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans. Biom. Eng. 46: 1129-1138 (1999).
- 22. Di Barba P., Dughiero F., Sieni E., Synthesizing Distributions of Magnetic Nanoparticles for Clinical Hyperthermia. IEEE Trans. Magn., in press.
- 23. Deb K., Pratap A., Agarwal S., Meyarivan E.T., A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on 6(2): 182-197 (2002).
- 24. Hudy W., Jaracz K., Selection of control parameters in a control system with a DC electric series motor using evolutionary algorithm. Archives of Electrical Engineering 60(3): 231-237 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS4-0001-0034