Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper examines mini-models method and its effectiveness when data modelling in an information deficiency situation. It also compares the effectiveness of mini-models with various methods of modelling such as neural networks, the KNN-method and polynomials. The algorithm concentrates only on local query data and does not construct a global model during the learning process when it is not necessary. It is characterized by a high efficacy and a short calculation time. The article briefly describes the method by means of four variants: linear heuristic, nonlinear heuristic, mini-models based on linear regression, and minimodels based on polynomial approximation. The paper presents the results of experiments that compare the effectiveness of mini-models with selected methods of modelling in an information deficiency situation.
Rocznik
Tom
Strony
21--27
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, Szczecin , Poland, mpietrzykowski@wi.zut.edu.pl
Bibliografia
- [1] Piegat A., Wąsikowska B., Korzeń M.: Differences between the method of mini-models and of the k-nearest neighbors on example of modeling of unemployment rate in Poland in Information Systems in Management IX. Bussines Inteligence and Knowledge Management, Warsaw, 2011, pp. 34-43.
- [2] Piegat A., Wąsikowska B., Korzeń M.: Zastosowanie samouczącego się trzypunktowego minimodelu do modelowania stopy bezrobocia w Polsce, Studia Informatica, no. 27, pp. 45-58, 2011.
- [3] Rutkowski L.: Metody i techniki sztucznej inteligencji. Warszawa: PWN, 2009.
- [4] Fix E., Hodges J. L.: Discriminatory analysis, nonparametric discrimination: Consistency properties, Randolph Field, Texas, 1951.
- [5] Kordos M., Blachnik M., Strzempa D.: Do We Need Whatever More than k-NN?, in Proceedings of 10-th International Conference on Artificial Inteligence and Soft Computing, Zakopane, 2010.
- [6] Pietrzykowski M.: Comparison of effectiveness of linear mini-models with some methods of modelling, in Młodzi naukowcy dla Polskiej Nauki, Kraków, 2011.
- [7] Pietrzykowski M.: The use of linear and nonlinear mini-models in process of data modelling in a 2D-space, in Nowe trendy w naukach inżynieryjnych., 2011.
- [8] Specht D. F.: A General Regression Neural Network, IEEE Transactions on Neural Networks, pp. 568-576, 1991.
- [9] Witten I. A., Frank E.: Data mining. San Francisco: Morgan Kaufmann Publishers,2005.
- [10] Pluciński M.: Nonlinear ellipsoidal mini-models – application for the function approximation task, paper accepted for ACS Conference, 2012
- [11] Pluciński M.: Application of the information-gap theory for evaluation of nearest neighbours method robustness to data uncertainty, paper accepted for ACS Conference, 2012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0025-0124