PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification based 3-D surface analysis: predicting springback in sheet metal forming

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes an application of data mining, namely classification, with respect to 3-D surface analysis. More specifically in the context of sheet metal forming, especially Asymmetric Incremental Sheet Forming (AISF). The issue with sheet metal forming processes is that their application results in springback, which means that the resulting shape is not necessarily the desired shape. Errors are introduced in a non-linear manner for a variety of reasons, but the main contributor is the geometry of the desired shape. A Local Geometry Matrix (LGM) representation is thus proposed that allows the capture of local 3-D surface geometries in such a way that classifier generators can be effectively applied. The resulting classifier can then be used to predict errors with respect to new surfaces to be manufactured so that some correcting strategy can be applied. The reported evaluation of the proposed technique indicates that excellent results can be produced.
Słowa kluczowe
Rocznik
Strony
45--59
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] J. M. Allwood, G. P. F. King, and J. Duflou. A structured search for applications of the incremental sheet-forming process by product segmentation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(2):239–244, 2005.
  • [2] M. Bambach, B. Taleb Araghi, and G. Hirt. Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Production Engineering Research and Development, 3(2):145–156, 2009.
  • [3] F. Coenen and P. Leng. Obtaining best parameter values for accurate classification. In Proc. IEEE Int. Conf. on Data Mining (ICDM’ 05), pages 597–600, 2005.
  • [4] F. Coenen, P. Leng, and L. Zhang. Threshold tuning for improved classification association rule mining. In Proc. PAKDD 2005, Springer LNAI3158, pages 216–225, 2005.
  • [5] G. Dearden, S.P. Edwardson, E. Abed, K. Bartkowiak, and K.G.Watkins. Correction of distortion and design shape in aluminium structures using laser forming. In 25th International Congress on Applications of Lasers and Electro Optics(ICALEO 2006), pages 813–817, 2006.
  • [6] J. Diederich. Rule extraction from support vector machines, volume 80. Springer New York Inc., 2008.
  • [7] S. Dunston, S. Ranjithan, and E. Bernold. Neural network model for the automated control of springback in rebars. IEEE Expert: Intelligent Systems and Their Applications, pages 45–49, 1996.
  • [8] S.P. Edwardson, K.G.Watkins, G. Dearden, and J. Magee. Generation of 3D shapes using a laser forming technique. In Proceedings of ICALEO’2001, pages 2–5, 2001.
  • [9] P.A. Egerton and W W. Hall. Computer graphics: Mathematical first steps. Simon and Schuster International, 1998.
  • [10] A.E. Elalfi, R. Haque, and M.E. Elalami. Extracting rules from trained neural network using GA for managing e-business. Applied Soft Computing, 4(1):65–77, 2004.
  • [11] J.H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–67, 1991.
  • [12] G. Guo, L. Zhang, and D. Zhang. A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6):1657–1663, 2010.
  • [13] G. Hirt, J. Ames, M. Bambach, R. Kopp, and R. Kopp. Forming strategies and process modelling for CNC incremental sheet forming. CIRP Annals - Manufacturing Technology, 53(1):203–206, 2004.
  • [14] M. Inamdar, P.P. Date, K Narasimhan, S.K. Maiti, and U.P. Singh. Development of an articial neural network to predict springback in Air Vee bending. International Journal of Advanced Manufacturing Technology, 16(5):376–381, 2000.
  • [15] M. S. Khan, F. Coenen, C. Dixon, and S. El-Salhi. Finding correlations between 3-d surfaces: A Predicting springback in sheet metal forming 59 study in asymmetric incremental sheet forming. In Proc. Machine Learning and Data Mining in Pattern Recognition (MLDM’12), Springer LNAI 7376, pages 336–379, 2012.
  • [16] D.J. Kim and B.M. Kim. Application of neural network and FEM for metal forming processes. International Journal of Machine Tools and Manufacture, 40(6):911–925, 1999.
  • [17] B. Kinsey, J. Cao, and S. Solla. Consistent and minimal springback using a stepped binder force trajectory and neural network control. Journal of Engineering Materials and Technology, 122(1113):113–118, 2000.
  • [18] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based on multiple class-association rules. In Proc. IEEE Int. Conf. on Data Mining (ICDM’ 05), pages 369–376, 2001.
  • [19] K. Manabe, M. Yang, and S. Yoshihara. Artificial intelligence identification of process parameters and adaptive control system for deep drawing process. Journal of Materials Processing Technology, 80-81:421–426, 1998.
  • [20] N. Narasimhan and M. Lovell. Predicting springback in sheet metal forming an explicit to implicite sequential solution procedure. Finite Elements in Analysis and Design, 33(1):29–42, 1999.
  • [21] T. Ojala, M.P. Inen, and T. Ma´eenpa´e. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002.
  • [22] K.K. Pathak, S. Panthi, and N. Ramakrishnan. Application of neural network in sheet metal bending process. Defence Science Journal, 55(2):125–131, 2005.
  • [23] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., 1993.
  • [24] J.R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
  • [25] R. Rufni and J. Cao. Using neural network for springback minimization in a channel forming process. Journal of Materials and Manufacturing, 107(5):65–73, 1998.
  • [26] J. Xu, Z. Zhang, and Y. Wu. Application of data mining method to improve the accuracy of springback prediction in sheet metal forming. Journal of Shanghai University (English Edition), 8(3):348–353, 2004.
  • [27] J.L. Yin and D.Y. Li. Knowledge discovery from finite element simulation data. In Proceedings of 2004 International Conference on Machine Learning and Cybernetics, pages 1335–1340, 2004.
  • [28] X. Yin and J. Han. Cpar: Classification based on predictive association rules. In SIAM Int. Conf. on Data Mining (SDM’03), pages 331–335, 2003.
  • [29] S. Zhang, C. Luo, Y.H. Peng, D.Y. Li, and H.B. Yang. Study on factors affecting springback and application of data mining in springback analysis. Journal of Shanghai Jiaotong University, E-8(2):192–196, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0025-0120
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.