PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controllability and observability gramians parallel computation using GPU

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Algorithms and parallel programs for the controllability and observability gramians computation of the Linear Time Invariant (LTI) systems using Lyapunov equation with an application of the NVIDIA general purpose Graphics Processing Unit (GPU), are presented in the paper. Parallel computing of the gramians on the basis of Lyapunov equation is justified for the large scale systems (n>104) due to the computational cost O(n3). The parallel performance of controllability gramians computation using NVIDIA graphics hardware GTX-465 have been compared with the performance obtained for MATLAB environment employing analogous algorithms. They have also been compared with the performance obtained for lyap function provided by MATLAB environment. The values of maximum computing acceleration were up to 20. The computations have been made on the basis of linearized models of the one-phase zone of a once-through boiler obtained with the finite elements method. The orders of the models were being adapted within the range between 30 and 4200.
Rocznik
Strony
47--66
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] Antoulas A.: Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia, 2005.
  • [2] Benner P., Ezzatti P., Kressner D., Quintana-Ortí E. S., Remón A., A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms. Parallel Computing, Vol. 37(8), pp. 439-450, 2011
  • [3] Benner P., Ezzatti P., Kressner D., Quintana-Ortí E. S., Remón A., Accelerating model reduction of large linear systems with graphics processors. Lecture Notes in Computer Science 7134, State of the Art in Scientific and Parallel Computing – PARA 200, pp. 88-97, 2012
  • [4] Benner P., Ezzatti P., Quintana-Ortí E. S., Remón A., Using hybrid CPU-GPU platforms to accelerate the computation of the matrix sign function. Lecture Notes in Computer Science 6043, 7th Int. Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks – HeteroPar’09, pp. 132-139, 2009
  • [5] Benner P., Quintana-Ortí E. S., Quintana-Ortí G.: State-Space Truncation Methods for parallel model reduction of large-scale systems, Parallel Computing, Vol. 29, pp. 1701-1722, 2003
  • [6] Benner P., Li R.-C., Truhar N.: On the ADI method for Sylvester equations. J. Computational Applied Mathematics, Vol. 233, No. 4, pp. 1035–1045, 2009.
  • [7] EM Photonics, Inc.: CULA programmer’s guide, EM Photonics, Inc., 2011
  • [8] EM Photonics, Inc.: CULA reference manual, EM Photonics, Inc., 2011
  • [9] Gajić Z.: Lyapunov matrix equation in system stability and control. Academic Press, San Diego, 1995.
  • [10] Hwu Wen-Mei W., Krik D..: Programming massively parallel processors, Elsevir Ltd. Oxford, 2010
  • [11] Nvidia Corporation: Whitepaper NVIDIA’s next generation CUDA compute architecture: Fermi, Nvidia Corporation, 2009
  • [12] Nvidia Corporation: Tesla M-CLASS GPU computing modules. Fastest parallel processors for accelerating science, Nvidia Corporation, 2011
  • [13] Nvidia Corporation: CUBLAS Library, Nvidia Corporation, 2010
  • [14] Nvidia Corporation: CUFFT Library, Nvidia Corporation, 2010
  • [15] Nvidia Corporation: CUSPARSE Library, Nvidia Corporation, 2010
  • [16] Nvidia Corporation: CURAND Library, Nvidia Corporation, 2010
  • [17] Penzl T.: A cyclic low rank Smith method for large sparse Lyapunov equations with applications in model reduction and optimal control. Technische Universitat Chemnitz, 1998.
  • [18] Quintana-Ortí E., Geijn R.: Specialized parallel algorithms for solving linear matrix equatios in control theory, Journal of Parallel and Distributed Computing, Vol. 61, pp. 1489-1504, 2001
  • [19] Sanders J., Kandrot E.: CUDA by example. An introduction to general-purpose GPU programming, Addison-Wesley, 2010
  • [20] Schilders W.: Model order reduction theory, research aspects and applications. Springer, Berlin, 2008.
  • [21] Stanisławski W., Rydel M. Hierarchical mathematical models of complex plants on the basis of power boiler example. Archives of Control Science Volume 20(LVI), 2010 No. 4, pp. 381–416, 2010
  • [22] Zhou. Y.: Numerical methods for large scale matrix equations with applications in LTI
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0025-0114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.