Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The examples of solutions branching are presented in the construction of D- and A-optimal placement of beacons in distance measurement problem of navigation and in the construction of Bayesian and maximin D-efficient designs of experiment..
Czasopismo
Rocznik
Tom
Strony
5--20
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Computer Science, St.-Petersburg State Electrotechnical University
Bibliografia
- [1] Barabanova L. P. (2008) Optimization of configurations of four beacons in a difference range finding navigation system within the visibility cone (Original Russian Text: Barabanova L. P. published in Izvestiya Akademii Nauk.Teoriya i Sistemy Upravleniya, 2008, No. 4, pp. 90–96.
- [2] Barabanov O. O., Barabanova L. P. Mathematical Problems of Distance Measuring Navigation, Moscow, 2007. (Original Russian Text: Barabanov O. O., Barabanova, L. P. Matematicheskie problemy dalnomernoj navigatsii, Moskva, Fizmatlit, 2007, 272 s.).
- [3] Brӓss D., Dette H. On the number of support points of maximin and Bayesian Doptimal designs in nonlinear regression models. Annals of Statistics, 35(2), 772-792.
- [4] Chaloner K., Larntz K. Optimal Bayesian experimental design applied to logistic regression experiments. J. Statist. Plann. Infer., 1989, 21, 191-208.
- [5] Dette H., Neugebauer H. M. Bayesian optimal one point designs for one parameter nonlinear models. J. Statist. Plann. Inference, 1996, 52, 17-31.
- [6] Keller J. B., Antman S. Bifurcation Theory and Nonlinear Eigenvalue problems / Edited by J.-B.- Keller and S.-Antman, W. A. Benjamin, Inc., New York, Amsterdam, 1969.
- [7] Kiefer J., Wolfowitz J. The equivalence of two extremum problems. Can. J. Math., 12, 129-132.
- [8] Lӓuter Å. Design of experiment method by non-linear parametrization. Math. Operationsforsch. Statist., Ser. Statist., 5, No. 7/8, 1974, 625-636 (in Russian).
- [9] Melas V. B., Staroselsky Yu. M. Studying maximin efficient designs for the Michaelis-Menten model. Procced. St.-Petersburg University, 2007, Series 1, No. 2, 41-50. (Original Russian Text: Melas, V. B., Staroselsky Yu. M. Issledovanie maximin-effektivnykh planov dlya modely Mikhaelisa-Menten. Vestnik Sankt-Peterburgskogo universiteta, 2007, Seriya 1, Vipusk 2, 41-50).
- [10] Reiss E. L. Column buckling – an elementary example of bifurcation.–In: Bifurcation theory and nonlinear eigenvalue problems / Edited by J. B. Keller and S. Antman, W. A. Benjamin, Inc., New York, 1969, Amsterdam.
- [11] Staroselsky Yu. M. Investigation of D-optimal designs for linear-fractional models. Procced. S.-Petersburg University, 2008, Series 10, No. 3, 98-105. (Original Russian Text: Staroselsky Yu. M. Issledovanie bayesovskikh D-optimaljnikh planov dlya drobnolinejnikh modelej. Vestnik Sankt-Peterburgskogo universiteta, 2008, Seriya 10, Vypusk 3, 98-105).
- [12] Staroselsky Yu. M. Investigation of optimal experimental designs for nonlinear regression models. Ph. D. Thesis. St.-Petersburg State University, 2008. (Original Russian Text: Staroselsky Yu. M. Issledovanie optimalynikh planov eksperimenta dlya nelinejnykh po parametram rergessionnykh modelej. St.-Petersburg State University.
- [13] Vainberg M. M., Trenogin V. A. Theory of Branching of Solutions of Non-linear Equations. Monographs and Textbooks on Pure and Applied Mathematics, Noordhoff International Publishing, Leyden, 1974, xxvi+485 pp.
- [14] Wong W. K. A unified approach to the construction of minimax designs. Biometrika, 79, 611-619, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0025-0088