Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article describes the results of studies on the similarity of protein structures generated by the sequences differing by only one amino acid residue. On this basis, the table of amino acid residue similarities has been determined. Similar residue sequences should generate similar protein structures – on this basis act such classification systems as SCOP and CATH. These systems detect the existence of domains of different lengths in the sequences. These domains are characteristic for proteins which exist in organisms. Synthesized proteins are not related to any other proteins and may contain domains that can not be classified by traditional methods. The solution to this problem may be to analyzing all the possible combinations of amino acid residues and observation of secondary structures generated by this sequence in exising proteins. Analyzing the structural differences in the sequences differing only by one amino acid residue gives information on the structural similarity of these amino acids. The task of analyzing all possible combinations of amino acid sequence is possible only for short stretches, because for longer stretches the same sequence cannot be found in the existing databases. So the second question is: how long the sequence should be analyzed in order to enable determining the local backbone structure. For this purpose, segments of known proteins with a length of 3 and 5 amino acid residues are analyzed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
137--149
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Politechnika Opolska, Wydział Elektrotechniki, Automatyki i Informatyki
Bibliografia
- [1] Kaczanowski S, Zielenkiewicz P, Why similar protein sequences encode similar threedimensional structures? Theoretical Chemistry Accounts. 2010; 125:543-550.
- [2] Venclovas C, Margelevicius M, Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment, and structure assessment, Proteins. 2005;61 Suppl 7:99-105.
- [3] Chothia C, Lesk AM, The relation between the divergence of sequence and structure in proteins, EMBO J. 1986 Apr;5(4):823-6.
- [4] Williamson AR, Creating a structural genomics consortium, Nat Struct Biol. 2000 Nov;7 Suppl:953.
- [5] Boobalan C. and Bharathi N, Comparative modeling and functional characterization of 3-D structure of a late embryogenesis abundant protein of Arabidopsis thaliana, J. Adv. Bioinf. App. and Res. 2010.
- [6] Mückstein U, Hofacker IL, Stadler PF., Stochastic pairwise alignments, Bioinformatics. 2002;18 Suppl 2:S153-60.
- [7] Topf M, Baker ML, Marti-Renom MA, Chiu W, Sali A, Refinement of protein structures by iterative comparative modeling and CryoEM density fitting, J Mol Biol. 2006 Apr 14;357(5):1655-68. Epub 2006 Feb 2.
- [8] Zemla A, LGA: A method for finding 3D similarities in protein structures, Nucleic Acids Res. 2003 Jul 1;31(13):3370-4.
- [9] Zhang Y, Skolnick J, The protein structure prediction problem could be solved using the current PDB library, Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1029-34. Epub 2005 Jan 14.
- [10] Froimowitz M, Fasman GD, Prediction of the secondary structure of proteins using the helix-coil transition theory, Macromolecules. 1974 Sep-Oct;7(5):583-9.
- [11] Mount DM, Bioinformatics: Sequence and Genome Analysis. 2, Cold Spring Harbor Laboratory Press. 2004.
- [12] Dor O, Zhou Y, Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training, Proteins. 2007 Mar 1;66(4):838-45.
- [13] Chou PY, Fasman GD, Prediction of protein conformation, Biochemistry. 1974 Jan 15;13(2):222-45.
- [14] Garnier J, Osguthorpe DJ, Robson B, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J Mol Biol. 1978 Mar 25;120(1):97-120.
- [15] Zhong L, Johnson WC Jr, Environment affects amino acid preference for secondary structure, Proc Natl Acad Sci U S A. 1992 May 15;89(10):4462-5.
- [16] Zhang Y, Progress and challenges in protein structure prediction, Curr Opin Struct Biol. 2008 Jun;18(3):342-8. Epub 2008 Apr 22..
- [17] Koshi JM, Goldstein RA, Probabilistic reconstruction of ancestral protein sequences, J Mol Evol. 1996 Feb;42(2):313-20.
- [18] Bowie JU, Lüthy R, Eisenberg D, A method to identify protein sequences that fold into a known three-dimensional structure, Science. 1991 Jul 12;253(5016):164-70.
- [19] Dunbrack RL Jr, Rotamer libraries in the 21st century, Curr Opin Struct Biol. 2002 Aug;12(4):431-40.
- [20] Perutz MF, The hemoglobin molecule. Sci Am. 1964 Nov;211:64-76.
- [21] Ingram VM, Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin, Nature. 1957 Aug 17;180(4581):326-8.
- [22] Koshi JM, Goldstein RA, Mutation matrices and physical-chemical properties: correlations and implications. Proteins. 1997 Mar;27(3):336-44.
- [23] M.O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, A Model of Evolutionary Change in Proteins, Atlas of protein sequence and structure. 1978.
- [24] Jones DT, Taylor WR, Thornton JM, A new approach to protein fold recognition, Nature. 1992 Jul 2;358(6381):86-9.
- [25] Henikoff S, Henikoff JG, Amino acid substitution matrices from protein blocks, Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9.
- [26] Styczynski MP, Jensen KL, Rigoutsos I, Stephanopoulos G, BLOSUM62 miscalculations improve search performance, Nat Biotechnol. 2008 Mar;26(3):274-5.
- [27] Gonnet GH, Cohen MA, Benner SA, Exhaustive matching of the entire protein sequence database, Science. 1992 Jun 5;256(5062):1443-5.
- [28] Müller T, Vingron M, Modeling amino acid replacement, J Comput Biol. 2000;7(6):761-76.
- [29] Claverie JM, Detecting frame shifts by amino acid sequence comparison, J Mol Biol. 1993 Dec 20;234(4):1140-57.
- [30] Kowlakowski LF, Rice KA, 1994. Accepted mutation parsimony functionally classifies G-protein-coupled receptors, Presented at the TIGR Computational Bioinformatics meeting, November 1997.
- [31] Koshi JM, Goldstein RA, Context-dependent optimal substitution matrices, Protein Eng. 1995 Jul;8(7):641-5.
- [32] Bordo D, Argos P, Suggestions for "safe" residue substitutions in site-directed mutagenesis, J Mol Biol. 1991 Feb 20;217(4):721-9.
- [33] Kyte J, Doolittle RF, A simple method for displaying the hydropathic character of a protein, J Mol Biol. 1982 May 5;157(1):105-32.
- [34] Naor D, Fischer D, Jernigan RL, Wolfson HJ, Nussinov R, Amino acid pair interchanges at spatially conserved locations, J Mol Biol. 1996 Mar 15;256(5):924-38.
- [35] Needleman SB, Wunsch CD, A general method applicable to the search for similarities in the amino acid sequence of two proteins, J Mol Biol. 1970 Mar;48(3):443-53.
- [36] Ginalski K, Comparative modeling for protein structure prediction, Curr Opin Struct Biol. 2006 Apr;16(2):172-7. Epub 2006 Feb 28.
- [37] Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A, Comparative protein structure modeling of genes and genomes, Annu Rev Biophys Biomol Struct. 2000;29:291-325.
- [38] John B, Sali A, Comparative protein structure modeling by iterative alignment, model building and model assessment, Nucleic Acids Res. 2003 Jul 15;31(14):3982-92.
- [39] Kosiol C, Goldman N, Different versions of the Dayhoff rate matrix, Mol Biol Evol. 2005 Feb;22(2):193-9. Epub 2004 Oct 13.
- [40] Dosztányi Z, Torda AE, Amino acid similarity matrices based on force fields, Bioinformatics. 2001 Aug;17(8):686-99.
- [41] Kidera A, Konishi Y, Oka M, Ooi T, Scheraga HA, Statistical analysis of physical properties of the 20 naturally occurring amino acids, Journal of Protein Chemistry, 1985
- [42] Adachi J, Hasegawa M, Model of amino acid substitution in proteins encoded by mitochondrial DNA, J Mol Evol. 1996 Apr;42(4):459-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0022-0069