Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this research, mathematical modeling of a duct heater has been performed using energy conservation law, Stefan-Boltzman law in thermal radiation, Fourier’s law in conduction heat transfer, and Newton’s law of cooling in convection heat transfer. The duct was divided to some elements with equal length. Each element has been studied separately and air physical properties in each element have been used based on its temperature. The derived equations have been solved using the finite difference method and consequently air temperature, internal and external temperatures of the wall, internal and external convection heat transfer coeffi cients, and the quantity of heat transferred have been calculated in each element and effects of the variation of heat transfer parameters have been surveyed. The results of modelling presented in this paper can be used for the design and optimization of heat exchangers.
Czasopismo
Rocznik
Tom
Strony
47--52
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
autor
- Islamic Azad University, Department of Chemical Engineering, Mahshahr branch, Mahshahr, Iran, Peyghambarzadeh@gmail.com
Bibliografia
- 1. Stein, R.P. (1966). Liquid metal heat transfer, Adv. Heat Tran., 3. 101–174. DOI: 10.1016/S0065-2717(08)70051-0.
- 2. Stein, R.P. (1966). Computational procedures for recent analysis of counter fl ow heat exchangers, AICHE J. 12, 1216–1219. DOI: 10.1002/aic.690140331.
- 3. Nuge, R.J. & Gill. (1965). Analysis of heat and mass transfer in some counter current fl ows, Int. J. Heat Mass Tran. 8, 873–886. DOI:10.1016/0017-9310(65)90072-4.
- 4. Nuge, R.J. & Gill. (1966). An analytical study of laminar counter fl ow double pipe heat exchanger, AICHE J. 12, 279–286. DOI: 10.1002/aic.690120214.
- 5. Bentwich, M. (1973). Multi stream counters current heat exchangers, ASME J. Heat Tran. 95, 458–463. DOI:10.1115/1.3450089.
- 6. Seban, R.A. (1972). Laminar counter fl ow exchangers: an approximate account of wall resistance and variable heat transfer coeffi cient, ASME J. Heat Tran. 94, 391–396. DOI:10.1115/1.3449957.
- 7. Bejan, A. (1977). The concept of irreversibility in heat exchanger design: counter fl ow heat exchangers for gas to gas applications, ASME J. Heat Tran. 99, 374–380. DOI: 10.1115/1.3450705.
- 8. Jung, D. & Assanis, D.N. (2006). Numerical modeling of cross fl ow compact heat exchanger with louvered fi ns using thermal resistance concept, SAE International.
- 9. Holman, J.P. (2002). Heat Transfer, Ninth edition, McGraw-Hill.
- 10. Kern, D.K. (1965). Process Heat Transfer, McGraw – Hill.
- 11. Incorpera, F.P., Dewitt, D.P., Bergman, T.L. & Lavine, A.S. (2007). Introduction to Heat Transfer, Fifth edition, John Wiley & Sons.
- 12. Van der Kraan, M., Peeters, M.M.W., Fernandez Cid, M.V., Woerlee, G.F., Veugelers, W.J.T. & Witkamp, G.J. (2005). The influence of variable physical properties and buoyancy on heat exchanger design for near- and supercritical conditions, J. Supercritical Fluids. 34, 99–105. DOI:10.1016/j.supfl u.2004.10.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0021-0084