PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immobilization of Aspergillus oryzae Β galactosidase on concanavalin A-layered calcium alginate-cellulose beads and its application in lactose hydrolysis in continuous spiral bed reactors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, Aspergillus oryzae Β galactosidase was immobilized on concanavalin A layered calcium alginate-cellulose beads as a bioaffi nity support. Immobilized enzyme showed a remarkable broadening in temperature-activity profi les as compared to the native enzyme and exhibited 65% activity in the presence of 5% galactose. Michaelis constant (Km) was 2.57 mM and 5.38 mM for the free and the immobilized Β galactosidase, respectively. Crosslinked Β galactosidase showed greater catalytic activity in the presence of Mg2+ and was more stable during storage at 4°C for 6 weeks. Immobilized enzyme hydrolyzed 67% lactose in milk in 8 h and 85% lactose in whey in 9 h in the stirred batch process at 50oC. The continuous hydrolysis of lactose by crosslinked Β galactosidase in spiral bed reactor exhibited 93% and 88% hydrolysis of lactose at flow rate of 20 ml/h and 30 ml/h, after 1 month operation, respectively.
Rocznik
Strony
15--20
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
autor
  • Aligarh Muslim University, Department of Biochemistry, Faculty of Life Sciences, Aligarh-202002, India, qayyumbiochem@gmail.com
Bibliografia
  • 1. Zhang, S., Gao, S & Gao, G. (2010). Immobilization of â galactosidase onto magnetic beads. Appl. Biochem. Biotechnol. 160, 1386–1393. DOI: 10.1007/s12010-009-8600-5.
  • 2. Heyman, B. (2006). Lactose Intolerance in infants, children and adolescents. Pediatrics 118, 1279–1286. DOI: 10.1542/peds.2006-1721.
  • 3. Ansari, S.A. & Husain, Q. (2010). Lactose hydrolysis by â galactosidase immobilized on concanavalin A-cellulose in batch and continuous mode. J. Molec. Catal. B: Enzym. 6, 68–74. DOI: 10.1016/j.molcatb.2009.12.010.
  • 4. Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M & Fernandez-Lafuente, R (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451–1463. DOI: 10.1016/j.enzmictec. 2007.01.018.
  • 5. Ansari, S.A. & Husain, Q. (2011). Immobilization of Kluyveromyces lactis â galactosidase on concanavalin A layered Al2O3 nanoparticles-its application in biosensors. J. Molec. Catal. B: Enzym. 70, 119–126. DOI: 10.1016/j.molcatb.2011.02.016.
  • 6. Husain, Q. (2010). â Galactosidases and their potential applications. Crit. Rev. Biotechnol. 30, 41–62. DOI: 10.4061/2010/473137.
  • 7. Betancor, L., Luckarift, R., Seo, H., Brand, O. & Spain, J.C. (2008). Three-dimensional immobilization of â galactosidase on a silicon surface. Biotechnol. Bioeng. 99, 261–267. DOI: 10.1002/bit.21570.
  • 8. Sun, S., Dong, L., Xu, X & Shen, S. (2010). Immobilization of â galactosidase from Aspergillus oryzae on macroporous poly GMA newly prepared. Int. J. Chem. 2, 89–96. DOI: 10.1016/ijc.2010.04.011.
  • 9. Gurdas, S., Gulec, H.A. & Mutlu, M. (2010). Immobilization of Aspergillus oryzae â galactosidase onto Duolite A568 resin via simple adsorption mechanism. Food Bioproc. Technol. DOI 10.1007/s11947-010-0384-7.
  • 10. Ansari, S.A., Husain, Q., Qayyum, S. & Azam, A. (2011) Designing and surface modifi cation of zinc oxide nanoparticles for biomedical applications. Food Chem. Toxicol. 2011 Sep;49(9):2107–15.
  • 11. Husain, Q., Ansari, S.A., Alam, F. & Azam, A. (2011) Immobilization of Aspergillus oryzae â galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int. J. Biol. Macromol. 49(1):37–43. DOI: 10.1016/j.ijbiomac.2011.03.011.
  • 12. Bradford, M.M. (1976). A rapid and sensitive method for the quantifi cation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–255. DOI: 10.1016/S0076-6879(09)63008-1.
  • 13. Lee, C.H., Oh, E., Kim, J. & Ahn, D.J. (2008). Immobilization of polydiacetylene vesicles on cellulose acetate butyrate (CAB)-coated substrates for self-assembled supramolecular sensor arrays. Coll. Surf. A: Physicochem. Eng. Aspects. 313, 500–503. DOI: 10.1016/j.colsurfa.2007.04.174.
  • 14. Prashanth, S.J. & Mulimani, V.H. (2005). Soymilk oligosaccharides hydrolysis by Aspergillus oryzae â galactosidase im mobilized in calcium alginate. Process Biochem. 40, 1119–1205. DOI: 10.1016/j.procbio.2004.04.011.
  • 15. Smidsrod, O & Skjak-Braek, G. (1990). Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78. DOI: 10.1016/0167-7799(90)90139-O.
  • 16. Hennink, W.E. & Nostrum, C.F.V. (2002). Novel crosslinking methods to design hydrogels. Adv. Drug. Deliv. 54, 13–36. DOI: 10.1016/S0169-409X(01)00240-X.
  • 17. Musthapa, S.M., Akhtar, S., Khan, A.A. & Husain, Q. (2004). An economical, simple and high yield procedure for the immobilization/stabilization of peroxidases from turnip roots. J. Sc. Ind. Res. 63, 540–547. DOI: 10.1016/j.bioeng.2006.07.004.
  • 18. Elnashar, M.M.M. & Yassin, M.A. (2009). Lactose hydrolysis by â galactosidase covalently immobilized to thermally stable biopolymers. Appl. Biochem. Biotechnol. 159, 426–37. DOI: 10.1007/s12010-008-8453-3.
  • 19. Bayramoglu, G., Tunali, Y. & Arica, M.Y. (2007). Immobilization of â galactosidase onto magnetic poly (GMAMMA) beads for hydrolysis of lactose in bed reactor. Catalys. Commun. 8, 1094–1101. DOI: 10.1016/j.catcom.2006.10.029.
  • 20. Ozdural, A.R., Tanyolac, D., Boyac, I.H. Mutlu, M & Webb, C. (2003). Determination of apparent kinetic parameters for competitive product inhibition in packed-bed immobilized reactor. Biochem. Eng. J. 14, 27–36. DOI: 10.1016/S1369-703X(02)00099-2.
  • 21. Zhou, Q.Z., Chen, X.D & Li, X. (2003). Kinetics of lactose hydrolysis by â galactosidase of Kluyveromyces lactis immobilized on cotton. Biotechnol. Bioeng. 81, 127–133. DOI: 10.1002/bit.10414.
  • 22. Sutendra, G., Wong, S., Fraser, M.E & Huber, R.E. (2007). â galactosidase (Escherichia coli) has a second catalytically important Mg+2 sites. Biochem. Biophys. Res. Comm. 352, 566–570. DOI: 10.1016/j.bbrc.2006.11.061.
  • 23. Gaur, R., Pant, H., Jain, R. & Khare, S.K. (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae â galactosidase. Food Chem. 97, 426–430. DOI: 10.1016/j.foodchem.2005.05.020.
  • 24. Haider, T. & Husain, Q. (2008). Hydrolysis of milk/whey lactose by â galactosidase: a comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme. Chem. Eng. Proc.: Process Intens. 48, 576–580. DOI: 10.1016/j.cep.2008.02.007.
  • 25. Diwedi, A. & Kayastha, A.M. (2009). Stabilization of â galactosidase (from peas) by immobilization onto amberlite MB-150 beads and its application in lactose hydrolysis. J. Agric. Food Chem. 57, 682–688. DOI: 10.1021/jf802573j.
  • 26. Novalin, S., Neuhaus, W. & Kulbe, K.D. (2005). A new innovative process to produce lactose reduced skim milk. J. Biotechnol. 119, 212–218. DOI: 10.1016/j.jbiotec.2005.03.018.
  • 27. Li, X., Zhou, Q.Z.K. & Chena, X.D. (2007). Pilot scale lactose hydrolysis using â galactosidase immobilized on cotton fabric. Chem. Eng. Proc. 46, 497–500. DOI: 10.1016/j. cep.2006.02.011.
  • 28. Tanriseven, A & Dogan, S. (2002). A novel method for the immobilization of â galactosidase. Process Biochem. 38, 27–30. DOI: 10.1016/S0032-9592(02)00049-3.
  • 29. Roy, I. & Gupta, M.N. (2003). Lactose hydrolysis by lactozym immobilized on cellulose beads in batch and fluidized modes. Process Biochem. 39, 325–332. DOI:10.1016/S0032-9592(03)00086-4.
  • 30. Mammarella, E.J. & Rubiolo, A.C (2006). Predicting the packed bed reactor performance with immobilized microbial lactase. Process Biochem. 41, 1627–1636. DOI: 10.1016/j.procbio.2006.03.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0021-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.