PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Humic acid Leonardite IHSS standard was decomposed on TiO2 and TiO2 modifi ed by FeC2O4 via the photocatalysis and photo-Fenton processes under UV irradiation. Humic acid (HA) were favorable adsorbed on TiO2 surface and followed decomposition during UV irradiation faster on TiO2 than on the modifi ed samples. However, when H2O2 was added to the solution, the photo-Fenton process occurred on the prepared TiO2 samples, contained iron together with photocatalysis and high acceleration of HA decomposition was observed. In this case the mineralization degree was much higher than in the applied photocatalysis only, around 75% HA (with concentration of 18 mg/L) was mineralized after 3 h of adsorption and 5 h of UV irradiation in the presence of H2O2 and modifi ed TiO2 whereas on TiO2 mineralisation of HA occurred in around 45% only. The measured fl uorescence spectra of HA solutions showed that in the presence of H2O2 polycyclic aromatics were rapidly oxidized to the lower size products such as alcohols, aldehydes, ketones and carboxylic acids, what accelerated the process of HA decomposition.
Rocznik
Strony
8--14
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
autor
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland, beata.tryba@zut.edu.pl
Bibliografia
  • 1. Liu, S., Lim, M., Fabris, R., Chow, C., Chiang, K., Drikas, M. & Amal, R. (2008). Removal of humic acid using TiO2 photocatalytic process – Fractionation and molecular weightcharacterisation studies. Chemosphere. 72, 263–271. DOI: 10.1016/j.chemosphere.2008.01.061.
  • 2. Murray, C.A. & Parsons, S. (2004). Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes. Chemosphere. 54, 1017–1023. DOI: 10.1016/j.chemosphere.2003.08.040.
  • 3. Fukushima, M. & Tatsumi K. (2001). Degradation characteristics of humic acid during photo-Fenton processes. Environ. Sci. Technol. 35, 3683–3690.
  • 4. Katsumata, H., Sada, M., Kaneco, S., Suzuki, T., Ohta, K. & Yobiko, Y. (2008). Humic acid degradation in aqueous solution by the photo-Fenton process. Chem. Eng. Journal. 137, 225–230. DOI: 10.1016/j.cej.2007.04.019.
  • 5. Al-Rasheed. R. & Cardin, D.J. (2003). Photocatalytic degradation of humic acid in saline waters. Part 1. Artifi cial seawater: infl uence of TiO2, temperature, pH, and air fl ow. Chemosphere. 51, 925–933. DOI: 10.1016/S0045-6535(03)00097-3.
  • 6. Al-Rasheed, R. & Cardin, D.J. (2003). Photocatalytic degradation of saline waters. Part 2. Effects of various photocatalytic materials. Appl. Catal. A: Gen. 246, 39–48. DOI: 10.1016/S0926-860X(02)00667-1.
  • 7. Selcuk, H., Sene, J.J, Sarikaya, H.Z., Bekbolet, M. & Anderson, M.A. (2004). An innovative photocatalytic technology in the treatment of river water containing humic substances. Water Sci. & Techn. 49, 153–158.
  • 8. Wiszniowski, J., Didier, R., Surmacz-Gorska, J. & Miksch, K. (2002). Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption and mechanism. J. Photochem. Photobiol. A: Chem. 152, 267–273.
  • 9. Cho, Y. & Choi, W. (2002). Visible-light induced reactions of humic acids on TiO2. J. Photocham. Photobiol. A: Chem. 148, 129–135.
  • 10. Bansal, A., Madhavi, S., Yang Tan, T.T. & Lim, T.M. (2008). Effect of silver on the photocatalytic degradation of humic acid. Catal. Today. 131, 250–254. DOI: 10.1016/j.cattod.2007.10.078.
  • 11. Moriguchi, T., Tahara, M. & Yaguchi, K. (2006). Adsorbability and photocatalytic degradability of humic substances in water on Ti-modifi ed silica. J. Coll. Interf. Sci. 297, 678–686. DOI: 10.1016/j.jcis.2005.11.002.
  • 12. Qiao, S., Sun, D.bD., Tay, J.bH. & Easton, C. (2003). Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. Wat. Sci. & Techn. 47, 211–217.
  • 13. Zhang, X., Pan, J.H., Fu, W., Du, A.J. & Sun, D.D. (2009). TiO2 nanotube photocatalytic oxidation for water treatment. Water Science & Technology. 9, 45–49. DOI: 10.2166/ws.2009.075.
  • 14. Wang, G.-S., Hsieh, S.-T. & Hong, C.-S. (2000). Destruction of humic acid in water by UV light-catalyzed oxidation with hydrogen peroxide. Water Res. 34, 3882–3887. DOI:
  • 15. Bekbolet, M. & Balcioglu, I. (1996). Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: The influence of hydrogen peroxide and bicarbonate ion. Wat. Sci. Techn. 34, 73–80.
  • 16. Tryba, B. Morawski, A.W., Inagaki, M. & Toyoda, M. (2006). The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts. Appl. Catal. B: Environ. 63, 215–221. DOI: 10.1016/ j.apcatb. 2005 .09. 011.
  • 17. Tryba, B. (2007). Effect of TiO2 precursor on the photoactivity of Fe-C-TiO2 photocatalysts for Acid Red (AR) decomposition. J. Adv. Oxid. Techn. 10, 267–272.
  • 18. Uyguner, C.S., Bekbolet, M. (2005). Evaluation of humic acid photocatalytic degradation by UV-Vis and fl uorescence spectroscopy. Catal. Today, 101, 267–274. DOI: 10.1016/j.cattod.2005.03.011.
  • 19. Fasurova, N., Cechlovska, H. & Kucerik, J. (2006). A comparative study of South Moravian lignite and standard IHSS humic acids, optical and colloidal properties. Petroleum & Coal. 48, 24–32.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0021-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.