Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the feasibility of the removal of hexavalent chromium ions from aqueous solutions by using activated carbon prepared from Cajanus Cajan(L) Milsp. It was carbonized and activated by treating it with concentrated sulfuric acid followed by heating for 5 h at 500oC. Batch adsorption experiments were carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage and temperature. The experimental data fi tted well to the Freundlich isotherm. The thermodynamic parameters such as ΔHo, ΔSo, and ΔGo were calculated, which indicated that the adsorption was spontaneous and endothermic in nature. The adsorbent used in this study was characterized by FT-IR and SEM before and after the adsorption of metal ions. The results indicate that Cajanus Cajan(L) Milsp can be employed as a low cost alternative and commercial adsorbents in the removal of chromium (VI) from water and waste water.
Czasopismo
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 7 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
- 1Department of Chemistry, AMS Engineering College, Namakkal, 637 013, India, vijielectron@yahoo.com
Bibliografia
- 1. Bishnoi, N., Bajaj, M., Sharma, N. & Gupta, A. (2004).Adsorption of Cr(VI) on activated rice husk carbon and activated alumina, Bioresour. Technol. 91, 305–307. DOI:10.1016/S0960-8524(03)00204-9.
- 2. Park, D., Yun, S.Y. & Park, J.M. (2005). Studies on hexavalent chromium biosorption by chemically treated biomass of Ecklonia sp., Chemosphere 60, 1356–1364. DOI:10.1016/j.chemosphere.2005.02.020
- 3. Khezami, L. & Capart, R. (2005). Removal of chromium(VI)from aqueous solution by activated carbons: Kinetic and equilibrium studies, J. Hazard. Mater. 123(1-3), 223–231.DOI:10.1016/j.jhazmat.2005.04.012.
- 4. US EPA, (1995).National Primary Drinking Water Regulations, Ground Water and Drinking water, Consumer factsheet on: Chromium. http://water.epa.gov/drink/contaminants/index. cfm.
- 5. Aksu, Z., Gonen, F. & Demircan, Z. (2002). Biosorption of chromium(VI) ions by Mowital B30H resin immobilized activated sludge in a packed bed; comparison with granular activated carbon, Process Biochem. 38, 175–186. DOI:10.1016/S0032-9592(02)00053-5.
- 6. Agarwal, G.S., Bhuptawat, H.K. & Chaudhari, S. (2006). Biosorption of aqueous chromium(VI) by Tamarindus indica seeds, Bioresour. Technol. 97, 949–956. DOI:10.1016/j. biortech.2005.04.030.
- 7. Acar, F.N. & Malkoc, E. (2004) The removal of chromium (VI) from aqueous solutions by Fagus orientalis L., Bioresour. Technol. 94 (1), 13–15. DOI:10.1016/j.biortech.2003.10.032.
- 8. Sarin, V. & Pant, K.K. (2006). Removal of chromium from industrial waste by using eucalyptus bark, Bioresour. Technol. 97 (1), 15–20. DOI:10.1016/j.biortech.2005.02.010.
- 9. Yasemin, B. & Zeki T . (2003). Removal of heavy metal ions by modifi ed sawdust of walnut, Fresen. Environ. Bull. 12(4), 376–381. http://www.psp-parlar.de/details_artikel. asp?tabelle=FEBArtikel&artikel_id=487&jahr=2003.
- 10. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2005). Biosorption of cobalt (II) and nickel (II) by seaweeds: batch and column studies, Separ. Purif. Technol. 44, 53–59. DOI:10.1016/j.seppur.2004.12.003.
- 11. Kadirvelu, K., Thamaraiselvi, K. & Namasivayam, C. (2001). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coir pitch, Separ. Purif. Technol. 24497–505. DOI:10.1016/S1383-5866(01)00149-6.
- 12. Ricordel, S., Taha, S., Cisse, I. & Dorange, G.(2001). Heavy metals removal by adsorption onto peanut husks carbon: Characterization, kinetic study and modeling, Separ. Purif. Technol. 24, 389–401. DOI:10.1016/S1383-5866(01)00139-3.
- 13. Al-Haj, A.A. & El-Bishtawi, R. (1999). Removal of lead and nickel ions using zaolite tuff, J. Chem. Tech. Biotechnol. 69, 27–34. DOI: 10.1002/(SICI)1097-4660(199705)69:1<27::AIDJCTB682>3.0.CO;2-J.
- 14. Mohan, D., Singh, K.P. & Singh, V.K. (2005). Removal of hexavalent chromium from aqueous solution using low cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth, Ind. Eng. Chem. Res. (ACS) 44, 1027–1042. http://pubs.acs.org/DOI: 10.1021/ie0400898.
- 15. Gupta, V.K., Park, K.T., Sharma, S. & Mohan, D. (1999). Removal of chromium(VI) from electroplating industry wastewater using bagasse fl y ash – a sugar industry waste material, Environmentalist 19, 129–136. http://www.springerlink.com/content/lp845812471l2522/fulltext.pdf.
- 16. Srivastava, S.K., Gupta, V.K. & Mohan, D. (1997). Removal of lead and chromium by activated slag- a blast furnace waste, J. Environ. Eng. (ACSE) 123(5), 461-468. http://dx.doi.org/10.1061/(ASCE)0733-9372(1997)123:5(461).
- 17. Loukidou, M.X., Zouboulis, A.I., Karapantsios, T.D. & Matis, K.A. (2004). Equilibrium and Kinetic modeling of chromium (VI) biosorption by Aeromonas caviae, Colloid Surfaces A., 242, 93–104. DOI:10.1016/j.colsurfa.2004.03.030
- 18. Gilcreas, F.W., Tarars, M.J. & Ingols, R.S. (1965). Standard methods for the examination of water and wastewater 12th edition, American Public Health Association(APHA) Inc, New York, 213–220.
- 19. Karthikeyan, S., Sivakumar P.& Palanisamy, P.N. (2008). Novel activated carbons from agricultural wastes and their characterization, E-J. of Chemistry, 5, 409–426. http://www.ejournals. in/open/vol5/no2/409-426.asp.
- 20. Mohan, D., Singh, K.P. & Singh, V.K. (2006). Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth, J. Hazard. Mater. 135, 280–295. DOI:10.1016/j.jhazmat.2005.11.075.
- 21. Benefi eld., L.D., Judkins, J.F. & Weand, B.L. (1982). Process chemistry for water and wastewater Treatment, Englewood Ciffs, NJ, 433–435.
- 22. Tewari, N., Vasudevan, P. & Guha, B.K. (2005). Study on biosorption of Cr(VI) by Mucor hiemalis, Biochem. Eng. J. 23 ,185 – 192. DOI:10.1016/j.bej.2005.01.011.
- 23. Langmuir, I. (1918). Adsorption of gases on plane surfa ces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361–1403.
- 24. Freundlich, H. (1906). Adsorption in solutions, Phys. Chem. 57, 385–410.
- 25. Gupta, V.K., Sharma, S., Yadau, I.S. & Dinesh, M. (1998). Utilisation of bagasses fl y ash generated in the sugar industry for the removal of phenol and P-nitrophenol from waste water, water, J. Chem. technol. Bio-technol. 71, 180–186. DOI: 10.1002/(SICI)1097-4660(199802)71:2<180::AID-JCTB798>3.0.CO;2-I.
- 26. Yavuz, O., Altunkaynak, Y. & Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Research 37, 948–952. DOI:10.1016/S0043-1354(02)00409-8.
- 27. Ajmal, M., Rao, R.A.K., Ahmad, R. & Khan, M.A. (2006). Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd(II) from wastewater, J. Hazard. Mater. 135, 242–248. DOI:10.1016/j.jhazmat.2005.11.054.
- 28. Gupta, V.K., Gupta, M. & Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mudan alumium industry waste, Water Research, 35, 1125–1134. DOI:10.1016/S0043-1354(00)00389-4.
- 29. Ho, Y.S. & Mckay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood, Trans. I Chem E, 76(B), 183–191. DOI:10.1205/095758298529326.
- 30. Hamadi, N.K., Chen, D.X., Farid, M.M. & Lu, M.G.Q. (2001). Adsorption kinetics for the removal chromium(VI) from aqueous solution by adsorbents derived from used tyres sawdust, Chem. Eng. J. 84, 95–105. DOI:10.1016/S1385-8947(01)00194-2.
- 31. Weber, W. J. & Morris,. J.C. (1963) Kinetics of adsorption on carbon from solution, J. of Sanitary Engineering Division American Society of civil Engineers, 89, 31–60.
- 32. Sheng, P.X., Ting, Y.P., Chen, J.P. & Hong, L. (2005). Sorption of lead, copper, cadmium, zinc and nickel by Marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interf. Sci. 275, 131–141. DOI:10.1016/j.jcis.2004.01.036.
- 33. Oliveria, E.A., Montanher, S.F., Andrade, A.D., Nobrega, J.A. & Rollemberg, M.C. (2005). Equilibrium studies for the sorption of chromium and Nickel from aqueous solutions using raw rice bran, Process Biochem. 40, 3485–3490. DOI:10.1016/j.procbio.2005.02.026.
- 34. Sharma, Y.C. & Weng, C.H. (2007). Removal of chromium (VI) from water and wastewater by using riverbed sand: Kinetic and equilibrium studies, J. Hazard. Mater. 142, 449–454. DOI:10.1016/j.jhazmat.2006.08.078.
- 35. Bishnoi, N.R., Bajai, M., Sharma, N. & Gupta, A. (2004). Adsorption of Cr(VI) on activated rice husk carbon and activated alumina, Bioresour. Technol. 91, 305–307. DOI:10.1016/S0960-8524(03)00204-9.
- 36. Sharma, Y.C. (2001). Effect of Temperature on interfacial adsorption of Cr(VI) on Wollastonite, J. Colloid Interface Sci. 233 265–270. DOI:10.1006/jcis.2000.7232.
- 37. Pino, G.H., Mesquita De, L.M.S., Torem, M.L. & Pinto, G.A.S. (2006). Biosorption of heavy metals by Powder of green coconut shell, Sep. Sci. Technol. 41, 3141–3153. DOI:10.1080/01496390600851640.
- 38. Banarjee, S.S., Joshi, M.V. & Jayaram, R.V. (2004). Removal of Cr(VI) and Hg(II) from aqueous solutions using fly ash and impregnated flyash, Sep. Sci. Technol. 39, 1611–1629. DOI: 10.1081/SS-120030778.
- 39. Sharma, Y.C.,Srivastava, V., Weng, C.H. & Upadhyyay, S.N. (2009). Removal of Cr(VI) from wastewater by adsorption on Iron nanoparticles, Can. J. of Chem. Eng. 87, 921–929. DOI: 10.1002/cjce.20230.
- 40. Baral, S.S., Das, S.N., Chaudhury, G.R., Swamy, Y.V. & Rath, P. (2008). Adsorption of Cr(VI) using thermally activated weed salvinia cucullata, Chem. Eng. J. 139, 245–255. DOI:10.1016/j.cej.2007.07.090.
- 41. Selvaraj, K., Manonmani, S. & Pattabhi, S. (2003). Removal of hexavalent chromium using Distillery sludge, Bioresour. Technol. 89, 207–211. DOI:10.1016/S0960-8524(03)00062-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0021-0077