PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A preliminary study on antifungal effect of TiO2-based paints in natural indoor light

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The antifungal activity of four commercial photocatalytic paints (KEIM Ecosil ME, Titanium FA, Photo Silicate and Silicate D) in natural indoor light was investigated. The paints contained TiO2 in rutile and anatase crystalline forms as evidenced by means of the X-ray diffraction analysis. In most cases the paints inhibited growth of fungi viz. Trichoderma viride, Aspergillus niger, Coonemeria crustacea, Eurotium herbariorum, and Dactylomyces sp . The KEIM Ecosil ME paint displayed the highest antifungal effect in the light, which could be explained with the highest anatase content. The paint antifungal activity and the fungal sensitivity to the TiO2- mediated photocatalytic reaction both decreased in the following orders: KEIM Ecosil ME > Titanium FA > Photo Silicate > Silicate D and T. viride > Dactylomyces sp. > A. niger > E. herbariorum.
Rocznik
Strony
53--57
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Polymer Institute Division of Biomaterials and Microbiological Technologies, ul. Pułaskiego 10, 70-322 Szczecin, Poland, agata@erb.pl
Bibliografia
  • 1. Lubkowski, K., Grzmil, B., Markowska-Szczupak, A. & Tymejczuk, A. (2009). Photocatalytic properties as an Essentials quality parameter of titanium dioxide pigments. J. Comm. Sci. 1, 82 – 91 (in Polish).
  • 2. Fujishima, A. & Zhang, X. (2005). Titanium dioxide photocatalysis: present situation and future approaches. Cr. Chim. 9(5-6), 750 – 760. DOI: 10.1016/j.crci.2005.02.055.
  • 3. Bystrzejewska, G.P., Golimowski, J. & Urban, P.L. (2009). Nanoparticles: their potential toxicity, waste and environment al management. Waste. Managm. 29(9), 2587 – 2595. DOI: 10.1016/j.wasman.2009.04.001.
  • 4. Matsunga, T., Tomoda, T., Nakajima, T. & Wake, H. (1985). Photochemical sterilization of microbial cells by semiconductor powder. FEMS Microbiol. Lett. 1-2 (29), 211 – 214. DOI: 10.1111/j.1574-6968.1985.tb00864.
  • 5. Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. & Jacoby, W.A. (1999). Bacterial activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65(9), 4094 – 4098.PMID: 10473421.
  • 6. Blake, D.M., Maness, P.C., Huang, Z., Wolfrum, E.J. & Huang, J. (1999). Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep. Purif. Methods. 28(1), 1 – 50. DOI: 10.1080/03602549909351643.
  • 7. Carp, O., Huisman, C.L. & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1-2), 33 – 177. DOI: 10.1016/j.progsolidstchem.2004.08.001.
  • 8. Malato, S., Fernández-Ibáńez, P. & Maldonado, M.I. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147(1);1 – 59. DOI: 10.1016/j.cattod.2009.06.018.
  • 9. Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10) 2997 – 3027. DOI: 10.1016/j.watres.2010.02.039.
  • 10. Kiwi, J. & Nadtochenko, V. (2005). Evidence for the mechanism of photocatalytic degradation of the bacterial Wall membrane at the TiO2 interface by AFR-FITR and laser kinetic spectroscopy. Langmuir 21, 4631 – 4641. DOI: 10.1021/la0469831.
  • 11. Wolfrum, E.J., Huang, J., Blake, D.M., Maness, P.C., Huang, Z. & Fiest, J. (2002). Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol. 36(15), 3412 – 3419. DOI: 10.1021/es011423j.
  • 12. Srinivasan, C. & Somasundaran, N. (2003). Bactericidal and detoxification effects of irradiated semiconductor catalyst TiO2. Curr. Sci. 85(10), 1431 – 1438.
  • 13. Cho, M., Chung, H., Choi, W. & Yoon, J. (2005). Different inactivation behaviours of MS-2 phage and E. coli In TiO2 photocatalytic disinfection. Appl. Environ. Microbiol. 71(1), 270 – 275. DOI: 10.1128/AEM.71.1.270-275.2005
  • 14. Paspaltsis, I., Kottta, K., Lagoudaki, R., Grigoriadis, N., Poulios, I. & Sklaviadis, T., (2006). Titanium dioxide photocatalytic inactivation of prions. J. General. Viriol. 87, 3125 – 3130. DOI: 10.1099/vir.08746-0.
  • 15. Tsuang, Y.H., Sun, J.S., Huang, Y.C., Lu, C.H., Chang, W.H. & Wang, C.C. (2008). Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif. Organs. 32(2), 167– 174. DOI: 10.1111/j.1525-1594.2007.00530.
  • 16. Rincon, A.G. & Pulgarin, C. (2004). Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2. Implications in solar water disinfection. Appl. Catal. B Environ. 51(4), 283 – 302. DOI: 10.1016/j.apcatb.2004.03.007.
  • 17. Makowski, A. & Wards, W. (2001). Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms. Curr. Top. Biophys. 25(1), 19 – 25.
  • 18. Blake, D.M. (2001). Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air. National Renewable Energy Laboratory, 1-158. from http://www.osti.gov/bridge.
  • 19. Gelover, S., Gómez, L.A., Reyes, K. & Leal, M.T. (2006). A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res. 40(17), 3274-3280. DOI: 10.1016/j.waters.2006.07.006.
  • 20. Kim, B., Kim, D., Cho, D. & Cho, S. (2003). Bacterial effect of TiO2 photocatalyst on selected food borne pathogenic bacteria. Chemosphere 52(1), 71 – 77. DOI: 10.1016/S0045-6535(03)00051-1.
  • 21. Maneerat, C. & Hayata, Y. (2006). Antifungal activity of TiO2 photocatalysis against Penicillium expensum in vitro and in fruit test. Intern. J. Food Microbiol. 107(2), 99 – 103. DOI: 10.1016/j.ijfoodmicro.2005.08.018.
  • 22. Seven, O., Dindar, B., Aydemir, S., Matin, D., Ozinel, A. & Icli, S. (2004). Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. J. Photochem. Photobiol. A Chem. 165(1-3), 103 – 107. DOI: 10.1016/j.jphotochem.2004.03.005.
  • 23. Hur, J.S., Oh, A.O., Lim, K.M., Jung, J.S., Kim, J.W. & Koh, Y.J. (2004). Novel effects of TiO2 photocatalytic ozonation on control of postharvest fungal spoilage of kiwifruit. Postharv. Biol. Technol. 35(1), 109 – 113. DOI: 10.1016/j.postharvbio.2004.03.013.
  • 24. Yang, J.Y., Kim, H.J. & Chung, C.H. (2006). Photocatalytic antifungal activity against Candida albicans by TiO2 coated acrylic resin denture base. J. Korean Acad. Prosthodont. 44(3), 284 – 294.
  • 25. Chen, F., Yang, X. & Wu, Q. (2009). Antifungal capability of TiO2 coated film on moist wood. Building. Environ. 44(5), 1088 – 1093, DOI: 10.1016/j.buildenv.2008.07.018.
  • 26. Allen, N.S., Edge, M., Sandoval, G., Verran, J., Stratton, J. & Maltby, J. (2005). Photocatalytic coatings for environment al applications. J. Photochem. Photobiol. 81(2), 279 – 290. DOI: 10.1562/2004-07-01-RA-221.1.
  • 27. Shieh, K.J., Li, M., Lee, Y.H., Sheu, S.D., Liu, Y.T. & Wang, Y.C. (2006). Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light. Nanomed. Biol. Med. 2(2), 121 – 126. DOI: 10.1016/j.nano.2006.04.001.
  • 28. Kau, J.H., Sun, D.S., Huang, H.H., Wong, M.S., Lin, H.C. & Chang, H.H. (2009). Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice. PLoS ONE 4(1), e4167. DOI: 10.1371/journal.pone.0004167.
  • 29. Hochmannova, L. & Vytrasova, J. (2010) Photocatalytic and antimicrobial effects of interior paints. Progr. Org. Coat. 67(1), 1 – 5. DOI: 0.1016/j.porgcoat.2009.09.016.
  • 30. Yigit, N., Aktas, E. & Ayyildiz, A. (2008). Antifungal activity of toothpaste against oral Candida isolates. J. Mycol. Med. 18(3), 141 – 146. DOI: 10.1016/j.mycmed.2008.06.003.
  • 31. Dantigny, P., Guilmart, A. & Bensoussan, M., 2005. Basis of predictive mycology. Intern. J. Food Microbiol. 100(1-3), 187 – 196. DOI:10.1016/j.ijfoodmicro.2004.10.013.
  • 32. Sirmahachai, U., Phongpaichit, S. & Wongnawa, S. (2009). Evaluation of bactericidal activity of TiO2 photocatalyst: comparative study of laboratory-made commercial TiO2 samples. Songklanakarin J. Sci. Tech. 31(5),1-9. hhtp://www.sjst.psu.ac.th.
  • 33. Rincon, A.G. & Pulgarin, C. (2003). Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl. Catal. B. Environ. 44(3), 263 – 284. DOI: 10.1016/S0926-3373(03)00076-6.
  • 34. Mitoraj, D., Jańczyk, A., Strus, M., Kirsch, H., Stochel, G., Heczko, P.B. & Macyk, W. (2007). Visible light inactivation of bacteria and fungi by modified titanium. Photochem. Photobiol. Sci. 6, 642 – 648. DOI: 10.1039/b617043a.
  • 35. Moa, J., Zhang, Y., Xu, Q., Lamso, J.J. & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmosph. Environ. 43(14), 2229 – 2246. DOI: 10.1016/j.atmosenv.2009.01.034.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0018-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.