PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolving adaptive recurrent networks with Developmental Symbolic Encoding

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we are concerned with evolutionary synthesis of recurrent networks capable of learning in the environment. First, we define the model of network we aim to evolve, which is weightless recurrent network of basic arithmetic nodes. Next, we propose a developmental genetic representation for the network, along with some genetic operators for it. The representation bears some important characteristics such as closure and completeness. Most notably, however, it features modularity and scalability, which we demonstrate on a parity problem. Finally, we evolve the network capable of successful learning in some narrow problem domain. The result shows, that for a given problem domain, evolutionary approach may produce networks performing better than generic neural networks.
Rocznik
Tom
Strony
175--187
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
  • West Pomeranian University of Technology, Szczecin Faculty of Computer Science and Information Technology
Bibliografia
  • [1] J. Koza, M. Keane, M. Streeter. What’s AI done for me lately? Genetic programming’s human-competitive results. IEEE Intelligent Systems, pp. 25–31, 2003.
  • [2] K. Balakrishnan, V. Honavar. Evolutionary and Neural Synthesis of Intelligent Agents. Advances in the evolutionary synthesis of intelligent agents, pp. 1–27. The MIT Press, 2001.
  • [3] D. Floreano, C. Mattiussi. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies.The MIT Press, 2008.
  • [4] X. Yao. Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.
  • [5] R. Miikkulainen. Evolving neural networks. Proceedings of the 2007 GECCO conference kompanion on Genetic and evolutionary computation, pp. 3415–3434. ACM, 2007.
  • [6] D. Floreano, P. D¨urr, C. Mattiussi. Neuroevolution: from architectures to learning. Evolutionary Intelligence, 1(1):47–62, 2008.
  • [7] D. Chalmers. The evolution of learning: An experiment in genetic connectionism. Proceedings of the 1990 connectionist models summer school, pp. 81–90. Citeseer, 1990.
  • [8] H. Kitano. Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4(4):461–476, 1990.
  • [9] F. Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis, Ecole Normale Suprieure de Lyon, France, 1994.
  • [10] F. Gruau, K. Quatramaran. Cellular encoding for interactive evolutionary robotics. Fourth European Conference on Artificial Life, pp. 368–377. The MIT Press, 1997.
  • [11] E. Boers, I. Sprinkhuizen-Kuyper. Combined biological metaphors. Advances in the evolutionary synthesis of intelligent agents, pp. 153–183. The MIT Press, 2001.
  • [12] K. Stanley, R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9(2):93–130, 2003.
  • [13] R. Poli, W. Langdon, N. McPhee. A Field Guide to Genetic Programming. Lulu Press, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0016-0096
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.