PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena jakości obrazów generowanych przez algorytmy demosaicingu

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W artykule zaprezentowane i przetestowane zostały techniki oceny spadku jakości obrazów spowodowanego przez algorytmy demosaicingu. Pod uwagę wzięto trzy metryki: CIE76, S-CIELAB oraz HDR-VDP służące do automatycznego szacowania różnic w wyglądzie pomiędzy obrazem wzorcowym a obrazem po demosaicingu. Najlepsze wyniki uzyskano dla metryki HDR-VDP, która generuje rezultaty spójne z percepcyjnym widzeniem zniekształceń przez człowieka. Metryka HDR-VDP może być z powodzeniem stosowana do oceny jakości algorytmów demosaicingu.
EN
Most of the modern digital cameras capture color images based on the CFA (Color Filter Array) pattern. Each point of the sensor matrix acquires one of the R,G, or B values. The demosaicing algorithms convert mosaic consisted of these points to a standard digital image representation with three RGB values for each color channel. The quality of the demosaicing algorithms is measured as a level of deformation in an image after demosaicing comparing to original appearance of a scene. In particular, unfavorable are artifacts that are well seen by a man, like object blurring or color halos. In the paper the metrics of difference between a scene and an image of a scene after demosaicing are analyzed. We test the following difference metrics: CIE76 (E ab), S-CIELAB, and HDR-VDP and suggest the one which is the most suitable for estimation of demosaicing algorithms fidelity.
Rocznik
Tom
Strony
113--123
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Informatyki
Bibliografia
  • [1] B. Bayer. Color imaging array, US Patent 3,971,065, July 1976.
  • [2] R. Merrill. Color separation in an active pixel cell imaging array using a triple-well structure, US Patent 5,965,875, October 1999.
  • [3] X. M. Zhang, B. A.Wandell. A spatial extension to CIELAB for digital color image reproduction. Proceedings of the SID Symposiums, pp. 731—-734, 1996.
  • [4] R. Mantiuk, K. Myszkowski, H.-P. Seidel. Visible difference predicator for high dynamic range images. 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), pp. 2763–2769, 2004.
  • [5] R. Hibbard. Apparatus and method for adaptively interpolating a full color image utilizing luminance gradients, US Patent 5,382,976, January 1995.
  • [6] J. Hamilton Jr, J. Adams Jr. Adaptive color plane interpolation in single sensor color electronic camera, US Patent 5,629,734, May 1997.
  • [7] M. Laroche, C. A. Prescott. Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients, 1994.
  • [8] D. Cok. Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image signal, 1987.
  • [9] W. Freeman. Method and apparatus for reconstructing missing color samples, US Patent 4,663,655, May 1987.
  • [10] K. Hirakawa, T.W. Parks. Adaptive Homogeneity-Directed Demosaicing Algorithm. IEEE Trans. Image Processing, 14:360–369, 2005.
  • [11] D. Coffin. dcraw: camera RAW file format parser, http://www.cybercom.net/˜dcoffin/.
  • [12] J. Glotzbach, R. Schafer, K. Illgner. A method of color filter array interpolation with aliascancellation properties. International Conference on Image Processing, pp. 141 – 144, 2001.
  • [13] B. K. Gunturk, Y. Altunbasak, R. M. Mersereau. Color Plane Interpolation Using Alternating Projections. IEEE Trans. Image Processing, 11(9):997–1013, 2002.
  • [14] J. Mukherjee, R. Parthasarathi, S. Goyal. Markov random feld processing for color demosaicing. Pattern Recognition Letters, 22:339–351, 2001.
  • [15] D. Taubman. Generalized Wiener reconstruction of images from colour sensor datausing a scale invariant prior. International Conference on Image Processing, pp. 801–804, 2000.
  • [16] H. Trussell, R. Hartwig. Mathematics for demosaicking. IEEE Transactions on Image Processing, 11(4):485–492, 2002.
  • [17] D. H. Brainard. Bayesian method for reconstructing color images from trichromatic samples. Proc. IS & T 47th Annual Meeting, p. 375–380, 1994.
  • [18] B. K. Gunturk, J. Glotzbach, R. W. Schafer, Y. Altunbasak, R. M. Mersereau. Demosaicking: Color Filter Array Interpolation in Single-Chip Digital Cameras. IEEE Signal Processing Magazine, 22(1):44–54, 2005.
  • [19] X. Li, B. Gunturk, L. Zhang. Image demosaicing: a systematic survey. SPIE-IS&T Electronic Imaging, Visual Communications and Image Processing, 6822(1), 2008.
  • [20] R. Ramanath, W. Snyder, G. Bilbro, W. Sander. Demosaicking methods for bayer color arrays. Journal of Electronic Imaging, 11(3):306–315, 2002.
  • [21] Z. Wang, A. C. Bovik. Mean Squared Error: Love It or Leave It? IEEE Signal Processing Magazine, 26:98–117, 2009.
  • [22] E. Reinhard, E. A. Khan, A. A. Oguz, M. J. Garrett. Color Imaging Fundamentals and Applications. A K Peters Ltd., 2008.
  • [23] Daly Scott. The Visible Differences Predictor: An Algorithm for the Assessment of Image Fidelity, pp. 179–206. A.B. Watson, MIT Press, Cambridge, Massachusetts, 1993.
  • [24] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. The Morgan Kaufmann, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0016-0091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.