Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work preparation and characteristic of modified nanocarbons is described. These materials were obtained using nanocrystalline iron as a catalyst and ethylene as a carbon source at 700°C. The influence of argon or hydrogen addition to reaction mixture was investigated. After ethylene decomposition samples were hydrogenated at 500°C. As a results iron carbide (Fe3C) in the carbon matrix in the form of multi walled carbon nanotubes was obtained. After a treatment under hydrogen atmosphere iron carbide decomposed to iron and carbon and small iron particles agglomerated into larger ones.
Czasopismo
Rocznik
Tom
Strony
45--49
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland, ipelech@zut.edu.pl
Bibliografia
- 1. Balogh, Z., Halasi, G., Korbély, & Hernadi, K. (2008). CVD-syntesis of multiwall carbon nanotubes over potassium-doped supported catalysts. Appl. Catal. A: General 344, 191 – 197. doi:10.1016/j.apcata.2008.04.019.
- 2. Singh, B.K., Ryu, H., Rajeev, C.C., Nguyen, D.H., Park, S.J., Kim, S. & Lee, J.R. (2006). Growth of multiwalled carbon nanotubes from acetylene over in situ formed Co nanoparticles on MgO support. Solid State Commun. 139, 102 – 107. doi:10.1016/j.ssc.2006.05.021 .
- 3. Reddy, N.K., Meunier, J-L. & Coulombe, S. (2006). Growth of carbon nanotubes directly on a nickel surface by thermal CVD. Mater. Sci. 60, 3761 – 3765. doi:10.1016/j.matlet.2006.03.109.
- 4. Park, C. & Keane, M.A. (2004). Catalyst support effect in the growth of structured carbon from the decomposition of ethylene over nickel. J. Catal. 221, 386 – 399. doi:10.1016/j.jcat.2003.08.014..
- 5. Chen, Ch.M., Dai, Y.M., Huang, J.G. & Jehng, J.M. (2006). Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44, 1808 – 1820. doi:10.1016/j.carbon.2005.12.043.
- 6. Tobias, G., Shao, L.D., Salzmann, C.G., Huh, Y. & Green, M.L.H. (2006). Purification and opening of carbon nanotubes using steam. J. Phys. Chem. B 110, 22318 – 22322. doi: 10.1021/jp0631883.
- 7. Wang, Y.H., Shan, H.W., Hauge, R.H., Pasquali, M. & Smalley, R.A. (2007). A highly selective, one-pot purification method for single-walled carbon nanotubes. J. Phys. Chem. B 111, 1249 – 1252. doi: 10.1021/jp068229+.
- 8. Hernadi, K., Siska, A., Thien-Nga, L., Forro, L. & Kiricsi, I. (2001). Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141&142, 203– 209. doi:10.1016/S0167-2738(01)00789-5.
- 9. Pełech, I. & Narkiewicz, U. (2009). Studies of hydrogen interaction with carbon deposit containing carbon nanotubes. J. Non-Cryst. Solids 355, 1370 – 1375. doi: 10.1016/j.jnoncrysol.2009.05.025.
- 10. Fonseca, A., Hernadi, K., Piedigrosso, P., Colomer, J.F., Mukhopadhyay, K., Doome, R., Lazarescu, S., Brio, L.P., Lambin, Ph., Thiry, P.A., Bernaerts, D. & Nagy, J.B. (1998). Synthesis of single- and multi-wall nanotubes over supported. Appl. Phys. A 67, 11 – 22. doi: 10.1007/s003390050732.
- 11. Narkiewicz, U., Pełech, I., Rosłaniec, Z., Kwiatkowska, M. & Arabczyk, W. (2007). Preparation of nanocrystalline iron-carbon materiale as fillers for polymers. Nanotechnology 18, 405601. doi:10.1088/0957-4484/18/40/405601.
- 12. Rocco, A.M., Cristiane, C.A., Macedo, M.I.F., Maestro, L.F. & Herbst, M.H. (2008). Purification of cataltically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst. J. Mater. Sci. 43, 557 – 567. doi: 10.1007/s10853-007-1779-3.
- 13. Raymundo-Pinero, E., Cazorla-Amorós, D., Salina-Martinez de Lecea, C. & Linares-Solano, A. (2000). Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step. Carbon 38, 335 – 344. doi: 10.1016/S0008-6223(99)00109-8.
- 14. Raymundo-Pinero, E., Cazorla-Amorós, D. & Linares-Solano, A. (2001). Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres. Carbon 39, 231 – 242.doi:10.1016/S0008-6223(00)00119-6.
- 15. Khavrus, V.O., Lemesh, N.V., Gordijchuk, S.V., Tripolsky, A.I., Iwashchenko, T.S., Biliy, M.M. & Strizhak, P.E. (2008). Chemical catalytic vapor deposition (CCVD) synthesis of carbon annotubes by decomposition of ethylene on metal (Ni, Co, Fe) nanoparticles. React. Kinet. Catal. Lett. 93, 295 – 303. doi: 10.1007/s11144-008-5225-6.
- 16. Donato, M.G., Messina, G., Milone, C., Pristone, A. & Santangelo, S. (2008). Experiments on C nanotubes synthesis by Fe-assisted ethane decomposition. Diam. Relat. Mater. 17, 318 – 324. doi: 10.1016/j.diamond.2007.12.043.
- 17. Nagaraju, N., Fonseca, A., Konya, Z. & Nagy, J.B. (2002). Alumina and silica supported metal catalysts for the production of carbon nanotubes. J. Mol. Catal. A-Chem. 181, 57 – 62. doi: S1381-1169(01)00375-2.
- 18. Escobar, M., Moreno, M.S., Candal, R.J. Marchi, M.C., Caso, A., Polosecki, P.I. Rubiolo, G.H. & Goyanes S. (2007). Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics. Appl. Surf. Sci. 254, 251 – 256. doi: 10.1016/j.apsusc.2007.07.044.
- 19. Tripol'skii, A.I., Lemesh, N.V., Khavrus', V.A. & Strizhak, P.E. (2008). Morphology of carbon nanotubes, obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H2. Theor. Exp. Chem. 44, 240 – 244. doi: 0040-5760/08/4404-0240.
- 20. Venegoni, D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C. & Kalck, P. (2002). Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40, 1799 – 1807. doi: S0008-6223(02)00057-X.
- 21. Ermakova, M.A., Ermakov, D.Y, Chuvilin, A.L. & Kushinov, G.G. (2001). Decomposition of methane over iron catalyst at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201, 183 – 197. doi:10.1006/jcat.2001.3243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0016-0064