Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The photocatalytic production of hydrogen over several chemical compounds based on sodium niobates and tantalates has been investigated. The photocatalysts have been prepared by an impregnation method of Nb2O5and Ta2O5 in the aqueous solution of sodium hydroxide and then the calcination at the temperature range of 450 – 800°C. In this report, we present the study showing that of the catalysts explored, the highest photocatalytic activity was shown in a sample obtained at the temperature of 450°C and containing NaTaO3 as a main phase.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
33--35
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland,, bzielinska@zut.edu.pl
Bibliografia
- 1. Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Ren. Sust. Energy Rev. 11, 401 – 425. DOI:10.1016/j.rser.2005.01.009.
- 2. Zheng, X.-J., Wei, L.-F., Zhang, Z.-H., Jiang, Q.-J., Wei, Y.-J., Xie, B. & Wei, M.-B. (2009). Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. Int. J. Hydrogen Energy. 34, 9033 – 9041. DOI:10.1016/j.ijhydene.2009.09.019.
- 3. Jeong, H., Kim, T., Kim, D. & Kim K. (2006). Hydrogen production by the photocatalytic overall water splitting on NiO/Sr3Ti2O7: Effect of preparation method. Int. J. Hydrogen Energy. 31, 1142 – 1146. DOI:10.1016/j.ijhydene.2005.10.005.
- 4. Shanker, V., Samal, S.L., Pradhan, G.K., Narayana, Ch. & Ganguli, A.K. (2009). Nanocrystalline NaNbO3and NaTaO3: Rietveld studies, Raman spectroscopy and dielectric properties. Solid State Sci. 11, 562 – 569. DOI: 10.1016/j.solidstatesciences.2008.08.001.
- 5. Kato, H., Asakura, K. & Kudo, A. (2003). Highly Efficient Water Splitting into H2and O2over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure. J. Am. Chem. Soc. 125, 3082 – 3089.
- 6. Zielińska, B. & Morawski, A.W. (2005) TiO2 photocatalysts promoted by alkali metals. Appl. Catal, B: 55, 221 – 226. DOI:10.1016/j.apcatb.2004.08.015.
- 7. Liu, J.W., Chen, G., Li, Z.H. & Ahang, Z.G. (2007). Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A=Na and K). Int. J. Hydrogen Energy. 32, 2269 – 2272. DOI:10.1016/j.ijhydene.2006.10.005.
- 8. Hsiao, Y.-J., Chang, Y.-H., Chang, Y.-S. Fang, T.-H., Chai, Y.-L., Chen, G.-J. & Huang, T.-H. (2007). Growth and characterization of NaNbO3 synthesized using reactionsintering method. Mater. Sci. Eng. 136, 129 – 133. DOI:10.1016/j.mseb.2006.09.013.
- 9. Zhu, H., Zheng, Z., Gao, X., Huang, Y., Yan, Z., Zou, J., Yin, H., Zou, Q., Kable, S. H., Zhao, J., Xi, Y., Martens, W. & Frost R. L. (2006). Structural Evolution in a Hydrothermal Reaction between Nb2O5 and NaOH Solution: From Nb2O5 Grains to Microporous Na2Nb2O62/3H2O Fibers and NaNbO3Cubes. J. Am. Chem. Soc. 128, 2373 – 2384.
- 10. Porob, D.G. & Maggard, P.A. (2006). Flux syntheses of La-doped NaTaO3 and its photocatalytic activity. J. Solid State Chem. 179, 1727 – 1732. DOI:10.1016/j.jssc.2006.03.008.
- 11. Kato, H. & Kudo, A. (1998). New tantalate photocatalysts for water decomposition into H2and O2. Chem. Phys. Lett. 295, 487 – 492.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0016-0061