Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Starch graft copolymers have been obtained via grafting of acrylic monomers i.e. acrylamide (AAm) and acrylic acid (AA) during the reactive extrusion processes. 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) was used as a radical initiator and N'N-methylenebisacrylamide (MBA), mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (trade name PETIA) and alkoxylated pentaerithritol acrylate (trade name Ebecryl 40) were applied as acrylic crosslinkers. The obtained materials were characterized by FTIR and their water sorption properties investigated using swelling (vol. %) and sorption (wt. %) tests. Sorption of water into these graft copolymer samples reached values of ca. 6 – 13 g of water per g of dry materials. It was also found that water sorption values were dependent on ratio of AAm and AA as well as on a type of the applied crosslinking agent.
Czasopismo
Rocznik
Tom
Strony
14--17
Opis fizyczny
Bibliogr. 12., rys., tab.
Twórcy
autor
autor
autor
- Westpomeranian University of Technology in Szczecin, Polymer Institute, 70-322 Szczecin, ul. Pulaskiego 10, Poland, e-mail: Tadeusz.Spychaj@zut.edu.pl
Bibliografia
- 1. Scheirs, J. (1998). Polymer recycling. Science technology and applications. J. Willey & Sons, Chichester.
- 2. Tomasik, P. (2000). Modified starches and their application (in Polish). Przemysł Spożywczy. 54(4), 16 – 18.
- 3. Raquez, J.M., Narayan, R. & Dubois, P. (2008). Recent advances in reactive extrusion processing of biodegradable polymer-based compositions. Macromol. Mat. Eng. 293(6), 447 – 470. DOI: 10.1002/mame.200700395.
- 4. Xie, F., Yu, Long., Liu, H. & Chen, Ling. (2006). Starch modification using reactive extrusion. Starch. 58, 131 – 139, DOI: 10.1002/star.200500407.
- 5. Yoon, K.J., Carr, M.E. & Bagley, E.B. (1992). Reactive extrusion vs. batch preparation of starch-g-polyacrylonitrile J. Appl. Polym. Sci. 45(6), 1093 – 1100.
- 6. Bravo-Osuna, I., Ferrero, C. & Jimenez-Castellanos, M.R. (2005). Water sorption-desorption behavior of methyl methacrylate-starch copolymers: effect of hydrophobic graft and drying method. European Journal of Pharmaceutics and Biopharmaceutics. 59(3), 537 – 548. DOI: 10.1016/j.ejpb.2004.10.003.
- 7. Tomasik, P., Fiedorowicz, M. & Para, A. (2004). Novelties in chemical modification of starch, in Starch: progress in structural studies, modifications. Kraków: Polish Society of Food Technologists – Małopolska Branch, pp. 301 – 331.
- 8. Athawale, V.D. & Vidyagauri L. (1998). Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it's hydrogels. Carboh. Polym. 35(1 – 2), 21 – 27. DOI: 10.1016/s0144-8617(97)00138-p.
- 9. Finkenstadt, V.L. & Willet, J.L. (2003). Preparation of starch-graft-polyacrylamide copolymers by reactive extrusion. Polym. Eng. Sci. 43(10), 1666 – 1674. DOI: 10.1002/pen.10140.
- 10. Lanthong, P., Nuisin, R. & Kiatkamjornwong, S. (2006). Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carboh. Polym. 66(2), 229 – 245. DOI:10.1016/j.carbpol.2006.03.006.
- 11. Kay-Shoemake, G. I., Waterood, M.E., Lenz, R.D. & Sojka, R.E. (1998). Polyacrylamide as an organic nitrogen source for soil microorganisms with potential effect on inorganic soil nitrogen in agricultural soil. Soil Biol. Biochem. 30(8/9), 1045 – 1052. DOI:10.1016/S0038-0717(97)00250-2.
- 12. Caulfield, J. M, Qiao., G.G. & Solomon, D. H. (2002). Some aspects of the properties and degradation of polyacrylamides. Chem. Review. 102(9), 3067 – 3084. DOI: 10.1021/cr010439p.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0016-0004