PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On parallei implementation of a steady state thermal and hydraulic analysis of pipe networks in OpenMP

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The considerable computation time of a practical application of sequential algorithms for simulating thermal and flow distribution in pipe networks is the motivating factor to study their parallei implementation. The mathematical model formulated and studied in the paper requires the solution of a set of nonlinear equations, which are solved by the Newton-Raphson method. An object-oriented solver automatically formulates the equations for networks of an arbitrary topology. The hydraulic model that is chosen as a benchmark consists of nodal flows and loop equations. A general decomposition algorithm for analysis of flow and temperature distribution in a pipe netwark is presented, and results of speedup of its parallel implementation are demonstrated.
Rocznik
Tom
Strony
43--51
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Computer Science and Information Technology
Bibliografia
  • [1] Kondrashenko V., Vinnichuk S., Fedorov M. Simulation of Gas and Liquid Distributing Systems. Naukova Dumka, Kiev, 1990, (in Russian).
  • [2] Massoud M. Engineering Thermofluids. Springer-Verlag, Berlin Heidelberg New York, 2005.
  • [3] Idelchik I. E. Handbook of Hydraulic Resistances. Machynostrojenije, Moscow, 1992, (in Russian).
  • [4] Fedorov M. On Software Design of Thermal Systems Steady State Control. Polish J. Environm. Stud. 4C, 2008.
  • [5] Donachie R. P. Digital Program for Water Network Analysis. J. Hydraulics Div., Vol. 100, HY3, ASCE, 1974.
  • [6] Chandrashekar M. Extended Set of Components in Pipe Networks. J. Hydraulic Div. Vol. 106, HY1. ASCE, 1980.
  • [7] Nogueira A. C. Steady-State Fluid Network Analysis. J. Hydraulic Eng., Vol. 119, 3, 1993.
  • [8] Nielsen B. N. Methods for Analyzing Pipe Networks. J. Hydraulic Eng., Vol. 115, 2, ASCE, 1989.
  • [9] Altman T., Boulos P. F. Convergence of Newton Method in Nonlinear Network Analysis. Mathl. Comput. Modelling, Vol. 21, 4, Elsevier, 1995.
  • [10] Ohtmer O. Nonlinear Flow Analysis in Pipe Networks. Int. J. Numer. Meth. Engng., Vol. 19, 1983.
  • [11] Evdokimov A. G. Optimal Problems of Engineering Networks. Wyzsha Shkola, Charkov, 1976, (in Russian).
  • [12] Merenkov A. P., Chasilev V. J. Theory of Hydraulic Circuits. Nauka, Moscow, 1985, (in Russian).
  • [13] Larock B. E., Jeppson R. W., Watters G. Z. Hydraulics of Pipeline Systems. CRC Press, Boca Raton London New York Washington, D.C., 2000.
  • [14] Osiadacz A. J. Steady-state Simulation of Gas Networks. Fluid systems Sp., Warszawa, 2001, (in Polish).
  • [15] Sennikova E. V., Sidler V. G. Mathematical Simulation and Optimization of Evolving Heat Supply Systems. Nauka, Novosibisk, 1987, (in Russian).
  • [16] Stevanovic V. D., Prica S., Maslovaric B., Zivkovic B., Nikodijevic S. Efficient Numerical Method for District Heating System Hydraulics. Energy Conversion & Management, Vol. 48, 2007.
  • [17] Boulos P. F, Wood D. J. Explicit Calculation of Pipe Network Parameters. J. Hydraulic Eng., Vol. 116, ASCE, 1990a.
  • [18] Fedorov M. Automation of Mathematical Model Construction for the Analysis of Heat Regimes of Heat Exchanger Systems by the Method of Gauss Convolution. Electronic modeling, Vol. 22, 6, 2000, (in Russian) (Engineering Simulation Vol.18, 2001, (English translation))
  • [19] Fedorov M. Steady-State Simulation of Heat Exchanger Networks. Electronic modeling, Vol. 24, 1, 2002, (in Russian).
  • [20] Filho L. O. F., Queiroz E. M., Costa A. L. H. A Matrix Approach for Steady-State Simulation of Heat Exchanger Networks. Applied Thermal Eng, 27, 2007.
  • [21] Fedorov M. Thermal Modes Simulation of Heat Exchanger Networks Having Turbomachines. Proceedings of the Int. Conf. On Marine Technology IV, WIT Press, Southampton, 2001.
  • [22] Čiegis Raim., Čiegis Rem., Meilūnas M., Jankevičiūtė G., Starikovičius V. Parallel mumerical algorithm for optimization of electrical cables. Mathematical Modelling and Analysis, Vol. 13, 4 (2008) 471-482.
  • [23] http://openmp.org. OpenMP Standard.
  • [24] Altschul A. D. Hydraulic Resistances. Nedra, Moscow, 1970, (in Russian).
  • [25] Kanevets G. E. Heat Exchangers and Heat Exchanger Systems. Naukowa Dumka, Kiev, 1982, (in Russian).
  • [26] Bialecki R. A., Kruczek T. Frictional Diathermal Flow of Steam in a Pipeline. Chem. Eng. Sc., Vol. 51, 19, 1996.
  • [27] Dennis J., Schnabel R. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia, 1996.
  • [28] Rice J. R. Matrix computations and mathematical software. McGraw-Hill, New York, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0014-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.