PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model częstotliwości podstawowej traktu głosowego zbudowany metodą grupowania argumentów (GMDH)

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
This paper concerns the problem of parameters estimation for a certain model, aiming at the approximation of output variable at the acceptable accuracy level. What distinguishes the way this common scientific task is here dealt with, is the usage of GMDH - Group Method of Data Handling (or more specifically the GMDH-based algorithm developed by the authors), which allows for simultaneous determination of both the structure and numerical characteristics of the model. The feature space under consideration is the matrix of repetitively observed attributes, describing the physical characteristics of voice samples, collected in order to determine the frequency of laryngeal tone for the purpose of medical diagnosis.
Rocznik
Strony
189--202
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Politechnika Szczecińska, Wydział Informatyki
Bibliografia
  • [1] Ivakhnenko A.G., Zaicenko J.P., Dimitrov V.D. Priniatije resenij na osnove samoorganizacji. Sovetskoe Radio, Moskwa 1976
  • [2| Ivakhnenko A.G., Ivakhnenko G.A., Mueller J. Self-organization of Neural Network with Active Neurons. Pattern Recognition and Image Analysis, 1999 v.4 no.2
  • [3] Tsymbal A., Pechenitzkiy M., Cunningham P. Diversity in Ensemble Feature Selection. Department of Computer Science, Trinity College, Dublin 2003.
  • [4] Lemke F., Mueller .J. Self-organization Data Mining for a Portfolio Trading System. Journal of Computational Intelligence in Finance. 1997/05.
  • [5] Hashem S., Schmeiser B. Improving Model Accuracy Using Optimal Linear Combinations of Trained Neural Networks. IEEE Transactions on Neural Networks, 1995.
  • [6] Ivakhnenko A.G., Ivakhnenko G.A. Problems of Further Development of the Group Metod of Data Handling Algorithms. Pattern Recognition and Image Analysis, 2000 v.10 no.2
  • [7] Parsa, V., Jamieson D.G. A comparison of high precision FO extraction algorithms for sustained vowels. Journal of Speech, Language, and Hearing Research. Vol. 42.1999, 1.
  • [8] de Cheveigné A., Kawahara, II. Comparative evaluation of F0 estimation algorithms. Proceedings of EUROSPEECH-2001. Aalborg, Denmark, 2001
  • [9] Gerhard D. Pitch Extraction and Fundamental Frequency:History and Current Techniąues. Technical Report TR-CS 2003-06. Regina, Dept. of Computer Science, University of Regina, 2003. ISSN 0828-3494.
  • [10] Uppglrd S. Implementation and Analysis of Pitch Tracking Algorithms (Report for Master of Science Thesis Project). Stockholm, The Royal Institute of Technology, 2001.
  • [11] Kay Elsmetrics Corporation. Disorder Voice Database Model 4337. Massachusetts Eye and Ear Infirmary Voice and Speech Lab, Boston, MA. 1994
  • [12] Oppenheim A.V., Schafer R.W. From Freąuency to Quefrency: A History of the Cepstrum. IEEE Signal Processing Magazine, Vol. 21, Issue 5, 2004, s. 95-106
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0008-0130
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.