PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of the kinetics of CH4 decomposition to Fe3C on the promoted iron catalysts

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The decomposition of methane on the doubly- (A1,O,, CaO) and triply- (K,O, A1,O,, CaO) promoted iron catalyst has been investigated using the thermobalance (considered as an differential reactor). The process of decomposition results in the formation of iron carbide and carbon deposit subsequently. The process was carried out under atmospheric pressure in the temperature range of 500 - 600°C. The rate of Fe3C formation in the kinetic region of the reaction was written using the following expression: r = k-pCH . The apparent activation energy of methane decomposition to Fe,C is equal to 158 kJ/mol for both doubly and triply promoted iron catalysts. The pre-exponential factor k() equals to 1.77-10* and 5.71 105 for doubly and triply promoted catalyst, respectively.
Rocznik
Strony
1--4
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Technical University of Szczecin, Institute of Chemical and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin, Poland
  • Technical University of Szczecin, Institute of Chemical and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin, Poland
autor
  • Technical University of Szczecin, Institute of Chemical and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin, Poland
autor
  • Technical University of Szczecin, Institute of Chemical and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • (1) Koerts T., Deelen M. J. A. G., van Santen R. A., Hydrocarbons formation from methane by a low-temperature two-step reaction sequence, J. Catal., 1992, 138, 101.
  • (2) Solymosi F., Erdöhelyi A., Cserényi J., Felvégi A., Decomposition of CH4 over supported Pd catalysts, J. Catal., 1994, 147, 272.
  • (3) Guczi L., van Santen R.A., Sarma K.V., Low-temperature coupling of methane, Catal. Rev.-Sci. Eng., 1996, 38(2), 249.
  • (4) Belgued M., Amariglio A., Lefort L., Paréja P., Amariglio H., Oxygen-free conversion of methane to higher alkanes through an isothermal two-step reaction on ruthenium, J. Catal., 1996, 161, 282.
  • (5) Carstens J.N., Bell A.T., Methane activation and conversion to higher hydrocarbons on supported ruthenium, J. Catal., 1996, 161, 423.
  • (6) Pareja P., Molina S., Amariglio A., Amariglio H., Isothermal conversion of methane into higher hydrocarbons and hydrogen by a two-step reaction sequence involving a rhodium catalyst, Appl. Catal., 1998, 168, 289.
  • (7) Standen A. (Executive editor), Kirk-Othmer Encyclopedia of Chemical technology, 2th ed., John Wiley & Sons, USA, 1967, 13.
  • (8) Avdeeva L. B., Goncharova O. V., Kochubey D. I., Zaikovskii V. l., Plyasova L. M., Novgorodov B. N., Shaikhutdinoy Sh. K., Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. 11. Evolution of the catalysts in reaction, Appl. Catal., 1996, 141, 117.
  • (9) Lřdeng R., Barrč-Chassonnery M., Fathi M., Rokstad O. A., Holmen A., Carbon formation from decomposition of CH4 on supported Ni catalysts, Stud. Surf. Sci. Cat., 1997, 561.
  • (10) Ruckenstein E., Hu Y.H., Catalytic preparation of narrow pore size distribution mesoporous carbon, Carbon, 1998, 36, 269.
  • (11) Hemadi K., Fonesca A., Nagy J. B., Bernacrts D., Lucas A. A., Fe-catalyzed carbon nanotube formation, Carbon, 1996, 34,1249.
  • (12) Ermakova M. A., Ermakov D. Yu., Chuvilin A. L., Kuvshinoy G. G., Decomposition of methane over iron catalysts at the range of moderate temperatures. The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments, J. Catal., 2001, 201, 183.
  • (13) Boehm H. P., Carbon from carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms, Carbon, 1973, 11, 583.
  • (14) Pilipenko P.S., Veselov Y.Y., On possibility of low-temperature synthesis of iron, cobalt, nickel carbides by methane carburization of metals, Poroshk. Metall., 1975, 6(150), 9.
  • (15) Chesnokov V. V., Buyanov R. A., Afanas'ev A. D., The carbide cycle mechanism in the catalyst carbonization, Kinet. Katal., 1979, 20, 477.
  • (16) Chesnokov V. V., Buyanov R. A., Mechanism of formation of carbon deposits from benzene on iron and nickel, Kinet. Katal., 1987, 28, 403.
  • (17) Grabke H. J., Martin E., Kinetics and thermodynamics of carburization and decarburization of a-iron in CH4-H2 mixtures, Arch. Eisenhüttenwes., 1972, 44(11), 837.
  • (18) Grabke H. J., Müller E. M., Speck H. V., Konczos, G., Kinetics of the carburization of iron alloys in methane-hydrogen mixtures and of the decarburization in hydrogen, Steel research, 1985, 56(5), 275.
  • (19) Grabke H. J., Kinetics and mechanisms of the surface reactions occurring during carburization and decarburization and also nitrogenation and denitrogenation of iron in gases, Arch. Eisenhüttenwes., 1975, 46(2), 75.
  • (20) Barański A., Kotarba A., Łagan J. M., Pattek-Janczyk A., Pyrczak E., Reizer A., Kinetics of activation of the industrial and model fused iron catalysts for ammonia synthesis, Appl. Catal., 1994, 112, 13.
  • (21) Arabczyk W., Narkiewicz U., Moszyński D., Double-layer model of the fused iron catalyst for ammonia synthesis, Langmuir, 1999, 15, 5785.
  • (22) Nielsen A., An investigation on promoted iron catalysts for the synthesis of ammonia, 3th ed., Jul. Gjellerups Forlag, Copenhagen, 1968.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS3-0002-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.