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ABSTRACT 

To investigate the dynamics of a planar plasma diode system (PDS), a model based on the 

current density equilibrium at the interface was developed. The current densities and plasma boundary 

variations with the potential fields were obtained by simulating a single square pulse. The variation of 

an observed overshoot current density with the applied voltage is presented. Planar plasma diode 

system was also simulated for periodic, sine, square, triangular and saw tooth voltage patterns by 

varying the amplitude and frequencies. A method to find the lower bound of the electron density of 

plasma for a specified PDS is presented. Particle-In-Cell simulation technique was used to investigate 

the plasma particles and electric field distributions over the anode cathode gap for different intensities 

of external electric fields. The system became stable after few time steps and this time depends upon 

the intensity and polarization of the external field. 

 

Keywords: Plasma diode, plasma boundary, current density, Particle-In-Cell simulation, anode cathode 

gap, potential field. 

 

 

 

1.  INTRODUCTION 

 

During the last decades, great attention was directed to plasma formation by 

ferroelectric emission [1] whose cathodes operate with high repetition rate producing uniform 

electron beams [2]. The electron emission from the surface plasma as a result of incomplete 

discharge along the surface of the ferroelectric sample [3] or electron avalanching along the 

tangential component of the applied electric field is enhanced due to the high dielectric 

constant of ferroelectrics [4]. In addition, the observed surface discharge is accompanied by a 

neutral flow that causes vacuum deterioration [5] and due to its expansion along the surface of 

the ferroelectric, the plasma serves as a dynamic front electrode. Oscillatory nonlinear 

electron flow in a Pierce diode was studied by Godfrey [6] to obtain a static solution and an 

integral formulation was presented by Schamel and Maslov [7] taking into account the ion 

dynamics. Nonlinear dynamics of a plasma filled diode in the presence of a magnetic field 

was investigated by Li et.at [8] under steady, oscillatory, chaotic and unstable dynamical 

regimes. 

A planar diode with plasma cathode in one dimension was modeled by considering 

equilibrium current densities at the plasma boundary using Runge-Kutta-Fehlberg method 

with adaptive step size. By means of the model, the current densities and plasma boundary 
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variation with the potential field was tested for ranges of A-C gap of the diode, the electron 

density of the plasma and thermal energy of plasma electrons for a single square voltage pulse 

varying its amplitude over, delay time, duration, and rise/fall time of the pulse. The current 

density through the diode and the plasma boundary with system parameters and square pulse 

parameters are presented. As an overshoot at rising edge of the current density was noticed, 

the relationship between overshoot current density and the applied voltage was obtained. 

Plasma diode system was simulated for sine, square, triangular and saw tooth periodic voltage 

patterns by varying the amplitude over (0−10) k𝑉 and frequency over (0−2000) M𝐻𝑧.  
The plasma boundary depends only on the amplitude of the applied pulse, electron 

density of plasma and the A-C gap, and a lower bound of the electron density can be 

introduced for a specified system and a method to find it for a specified PDS, is presented. 

Particle-In-Cell simulation technique was used to investigate the plasma particles and the 

electric field distribution over the anode cathode gap for different intensities of external 

electric field 0−2×10
−25 𝑉𝑚 and the number density of electrons ~2000 𝑚𝑚−2

. The plasma 

diode system became stable with time and the time taken to make the system stabilized, 

depended on the strength of applied electric field.  

 

 

2.  THE DYNAMICS OF THE CHARGED PARTICLE 

 

Plasma, an ionized state of matter differs from a neutral gas due to different character 

of inter-particle forces in them. In a neutral gas, this short range and strong force is of Van der 

Waals’ type whereas in plasma, this force is of the Coulomb type that is long range and weak 

at very large distances. Since each particle of the plasma interacts in many ways, it has very 

complex dynamics and physics is rich with information. Plasma is electrically neutral or 

quasi-neutral but on the scale of the Debye length (  ), there can be charge imbalance, since 

the Coulomb force among the plasma particles varies as inverse square of the distance. The 

effective electric field of the charge does not extend to infinity, but to a characteristic 

distance, Debye length
 

2

0 0D kT n e   given in terms of the charge density 0 , the number 

density of the plasma n0, the permittivity of the vacuum 0, the electron charge e, mass me, the 

Boltzmann constant k and the temperature of the electrons T while the plasma frequency p  

is 0 0 .ee m   The thermal velocity
ithv  of electrons and ions are 8 i ikT m . For a L 

dimension plasma with ne number density of electrons and collision frequency , the 

important conditions of the plasma are given by        
    

 and .p  The particle 

flux given in terms of the coefficient of diffusion D is D n    . The equation of motion of 

a plasma particle with a drift velocity v, including collisions is given by, 

 

 
d

mn en P mn
dt

     E E


    (1) 

 

where 𝜇 is the mobility of electrons or ions, P is the pressure, E is the electric field and the 

sign   indicate the sign of the charge. For isothermal plasma, the pressure is .nkT  The 

dynamics of plasma particles is governed by electromagnetic fields and Maxwell’s equations 

lead to continuity equation. The principle laws, used to model Plasma diode are the Child-

Langmuir law and the Bohm law. The plasma saturation current density epl e thenj   is given 
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in terms of electron plasma thermal velocity thv . For an applied voltage U0 and ferroelectric 

sample of dielectric constant  and thickness ,  the significant electric field enhancement is 

0 / .E U  The Child-Langmuir Law, a fairly direct result of the Poisson equation for an 

electron situated in between anode cathode gap, gives the maximum space charge limited 

current in a planar diode of infinite radius for one-dimensional beam as a function of the 

length and potential difference between anode and cathode, 

 

  3/2 2 6 3/2 2

0(4 9) 2 / ( ) ( ) 2.4 10 ( ) ( )e e d dj e m V t x t V t x t        (2) 

 

where Vd is the accelerating voltage and x is the distance between anode and the cathode 

plasma boundaries. The maximum electron current density that can be extracted from plasma 

whose electron number density is en  and the thermal velocity 
eTv  and temperature Te  is given 

by the Bohm law, 

  

( ) .
epl e T

dx
j t en v

dt

 
  

 
  (3) 

 

A plasma system can be implemented through a fluid description and the basic equations 

governing [9] are the continuity, momentum conservation and the Poisson’s equation given 

by,  

 

 
0

e ee
v

t x

 
 

 
  (4) 

 

e e
e

e e

v v eE e
v

t x m m x

   
     

   
  (5) 

 

 
2

2

0

1
e

x


 




 


  (6) 

 

Where  ,    and    are the electric potential, charge density and the velocity of electrons 

respectively. The boundary conditions are    0 00, , 0, ,et v t v      0, , 0t L t    and 

the initial conditions are given by  ,0x and  ,0e x  where  0,x L .  

 The geometry of planar plasma diode used to model is shown in the Figure 1. 

Assuming that the plasma will be formed at the vicinity of the cathode plate, the region 

between two plates was divided into two parts, the plasma region and the vacuum region with 

the plasma boundary situated in between the anode-boundary and cathode-boundary gap.  

These are the boundary of the plasma determined by the limited current densities of 

each region, thermal ion velocity of the plasma particles and the voltage of accelerating pulse. 

Since the ion-mass ratio is very large, the assumptions that the ions in the plasma form an 

immobile charge background and electrons are the only carriers contributing to the current 

densities in each region were made. 
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Fig. 1. The geometry of plasma diode used to model. 

 

Therefore vacuum current density and plasma current density are governed by the 

Child-Langmuir law and Bohm law. According to these laws, the current density of the 

plasma diode is limited and they are the space charge limit current density je and the plasma 

electron saturation current density jpl given in equations 2 and 3 respectively. By applying the 

Kirchhoff’s current law to the plasma boundary ( )e plj j , the following differential equation, 

 

 
3/2

0

2

( )4 8( ) 2

9 ( ) e e

e
T T

e e e

U t kTdx t e
V V

dt en m x t m





 
    

 
  (7) 

  

can beobtained. Here ne is the electron plasma density, Te the electron plasma temperature, d 

the anode cathode gap, U(t) the amplitude of the applied voltage pulse, x(t) the gap between 

anode and the plasma boundary and VTe is the thermal velocity of electrons.  

 

 

Fig. 2. Parameters of a square pulse. 

Accelerating Pulse 

U(t) 

Plasma 

Cathode 
Anode 

d 

X(t) 
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This differential equation indicates that the position of plasma boundary depends on the 

amplitude of the voltage pulse   , the duration of pulse   , the rise/fall time    and the time 

delay of the pulse application   with respect to initial time 0t   (Figure 2). The square wave 

pulse can be represented as, 

 

   

0
( ) ( )

/ / 2

a r u

a r r a a r r u

t U t t t
U t U t

U t t t t U U t t t t t

 

 

   
 

     
  (8) 

 

Equation 7 was solved using Runge Kutta fifth order method, for the initial conditions 

0
,

eTt
dx dt V


  (0)x d  and ranges of A-C gap of the diode (0−10) cm, the electron density of 

the plasma (0−10)×10
21 𝑚−3

 and thermal energy of plasma electrons (0−20) 𝑒𝑉 simulating for 

a single square voltage pulse by varying the amplitude over, (0−10) 𝑉, delay time (0−50)  𝑠, 
duration (0−20)  𝑠, and rise/fall time of the pulse. Input voltage and plasma boundary with 

respect to time is presented in Figure 3.  

Plasma at the vicinity of the cathode began to expand toward the anode with ion thermal 

velocity until there is non-zero voltage difference between two electrodes. Thereafter the 

plasma began to erode during the period of non-zero voltage and after the voltage fell to zero, 

the plasma once again expanded towards the anode. According to the value of time delay of 

the pulse, the whole A-C gap is filled with the plasma and the diode acts like a perfect 

conductor.  

 

 

 

 

Fig. 3. Input voltage (blue), plasma boundary (green) with time. 
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The temporal current density for input voltage pulse of 0.1 V, anode-cathode gap of 

4 ,cm the electron number density 21 310 m  and electron thermal energy 5eV  is shown in the 

Figure 4.  

 

 

The other parameters of the signal pulse used were the same as that of the input pulse 

of the Figure 3. There is an overshoot at the rising end of the current pulse. Before a voltage 

was applied to A-C gap, the plasma expanded towards the anode and most of the space in 

between A-C gap was filled by super conductive plasma.  

Thus the effective conductivity between the electrodes was very high compared to a 

vacuum tube leading to a large current flow with the application of non-zero voltage. But due 

to the erosion process of the plasma, the effective conductivity between the two electrodes 

was reduced and the overshoot current density was reduced to a stationary value.  

The overshoot and stationary current densities over the amplitude of the input pulse is 

shown in figure 5. The relationship between the ratio and the residual of the pulse amplitude, 

was 

 

3 2

2

1 1
( 4 10 ) (9.7 10 ) 0.19s

V V





         (9) 

 

 

 

Fig. 4. Current density against time. 
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The ratio goes to zero with increasing amplitude. The overshoot current density 

increases with respect to the stationary current density with the increase amplitude of the 

voltage pulse indicating that during the time delay of the pulse, plasma has been growing 

towards the anode. Increasing the time delay, more volume in the anode cathode gap can be 

filled with the plasma before applying a non-zero voltage to the diode.  

This also causes an increment in the initial conductivity of the diode and leads to high 

current overshoot at the rising end of the output pulse. By increasing the time delay further, 

the overshoot current will suddenly grow showing a large current with respect to the 

stationary value i.e. the stationary value can be considered as negligible (Figure 5). At this 

point the whole A-C gap is filled by the plasma, and the model fails beyond this point.  

The value for the delay of the pulse at breaking point of the model depends on the 

temperature of plasma electrons and their thermal velocity. Therefore by varying the time 

duration of the pulse only, the plasma boundary follows the curve of erosion which stands for 

the plasma boundary with an infinite duration pulse.  

The limitation of the plasma boundary becomes critical since the plasma boundary can 

neither exceed the anode-cathode gap nor expand to positive direction of the x-axis, the range 

following the condition, 0 .x d  By means of the above condition, it is possible to find 

physically possible ranges for other parameters and these are tabulated in Table 1. 

 

 

 

 

Fig. 5. Current density ratio versus residual of the amplitude of the pulse. 
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Table 1. Physically probable limits of the parameters. 

 

Parameter Range Other Conditions 

Amplitude of the pulse (V)          
     𝑚,      

   𝑚  , 

      𝑠,        𝑠 

Time delay of the pulse (ns)          
     𝑚,      

   𝑚  , 

       𝑠 

Anode Cathode gap d (cm)        
     𝑉,      

   𝑚  , 
      𝑠,        𝑠 

Electron density ne (m
-3

)              
     𝑚,      𝑉, 

      𝑠,        𝑠 

Electron Thermal Energy (eV)            
     𝑚,      

   𝑚  , 

      𝑠,        𝑠,       𝑉 

 

 

4.  SIMULATION BY DIFFERENT PERIODIC VOLATGE SIGNALS 

 

The modeled plasma diode was simulated with sine, square, triangle and saw tooth 

periodic voltage functions. The equations generating these periodic functions are given in the 

Table 2. The periodic patterns which can be generated by the model are shown in the Figure 

6. The input voltage pattern was changed by keeping the amplitude at 4000 V, frequency at 

10
8 

Hz and A-C gap at 4 cm, electron number density at 17 310 m and temperature at 4000 K.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Fourier series of wave patterns. 
 

Wave Pattern Fourier Series 

Square wave 

 

Absolute sine wave 

 

Triangular wave 

 

Rectangular saw-tooth wave 
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Fig. 6. Input voltage pattern: (a) sine function, (b) square function, 

(c) triangular function and (d) saw-tooth function. 

 

The input voltage patterns and the plasma boundary are shown in the Figures 7. For all 

voltage patterns, the movements of the plasma boundary determined by the plasma and 

electron current density showed that the plasma boundary is moving towards the anode.   

The plasma is expanding when the applied voltage is less than the equilibrium voltage, 

the sufficient voltage that keeps the plasma boundary. The plasma boundary move back 

towards the cathode (plasma erosion) when the applied voltage is greater than the equilibrium 

voltage.  In each case, the overall movement of the plasma boundary leads to an plasma 

expansion. But as the average poistion of the plasma boundary was moving towards the 

anode, the equilibrium level was reduced and the average movement of plasma boundary 

oscillates around a stationary poition.  

Since the average position of the plasma boundary has move towards the anode, the 

conductivity of the diode increased, thereby the peaks current also increased with time and 

reached a stationary value. Since sine and the triangular voltage patterns have nearly similar 

forms, the behaviour of plasma boundaries was similar. 

 

 

 (c) (d) 

  

  

(a) (b) 
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Fig. 7. Behaviour of the plasma boundary with different voltage patterns: (a) sine function, (b) square 

function, (c) triangular function and (d) sawtooth function. 

 

 

In the case of square voltage pattern which have only two voltage levels, the plasma 

expand with constant velocity during the period of zero voltage and erode with constant 

velocity during the period of non-zero voltage giving rise to a triangular behavior of the 

plasma boundary.  

Whereas for the sawtooth voltage, as the input voltage is changing rapidly the variation 

of the plasma boundary is not smooth. 

By changing the input voltage amplitude but keeping the other parameters constant, 

the current densities through the diode and the plasma boundary for the voltage patterns are 

presented in Figure 8.  

The peak value and the average boundary value can be changed by varying the 

amplitude of the pulse.  

 

 

 

 

(a) (b) 

(c) (d) 
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Fig. 8.  Behaviour of the current density with different voltage patterns: (a) sine function, (b) square 

function, (c) triangular function and (d) sawtooth function. 

 

The voltage amplitudes at stationary points for sine, square triangular and sawtooth 

pattern are at 4800, 4050, 4850 and 4750 V respectively. The graphs obtained for the best 

curve fitting models of the plasma boundary for different input sine voltage amplitudes in the 

range of 2000 V to 10,000 V is shown in Figure 9.  

The average stationary plasma boundary with time for sine waves is between the 

voltage amplitude range 4700 V to 5000 V. For amplitudes above the stationary point, the 

plasma had expanded in opposite direction of cathode to anode and has an upper bounded 

value.  

Plasma boundary and current density with different frequencies were investigated for 

three different frequency sine voltage patterns. The curve fitting models were found for these 

and are illustrated in figure 10. A significant relationship between the plasma boundary and 

the frequency of the input voltage pattern is not apparent.  
 

 

     

 

 (c) (d) 

  

  

(a) (b) 
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Fig. 9. Average plasma boundary vs. time for different input sine voltages. 

 

 

Fig. 10. Plasma boundary vs. time for different frequencies of sine voltages. 
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The electron densities at the stationary point or lower bound of the electron density was 

measured by varying sine voltage amplitude of the pulse in a range 2000 V − 10000 V and A-

C gap in 2.2 cm – 4.7 cm. The lower bound value of the electron number density over 

amplitude of the pulse and the A-C gap are depicted in the Figure 11.  

 

 

 
 

Fig. 11. Current densities for different input sine voltage amplitudes and AC gaps. 

 

 

The data was analyzed by using a two dimensional interpolation technique and a new 

set of interpolated data is shown in Figure 12. By means of the above generated data, it was 

possible to see the regression of minimal electron density of the system with amplitude of the 

pulse and Ac gap.  

The interpolated data illustrated in a contour plot in Figure 13, can be used to find lower 

bound of the electron density of the plasma which is generated inside the anode cathode gap 

for specified plasma diode system. 

Thus if the maximum amplitude of the application voltage and the anode cathode gap 

are known, the minimal electron density of a plasma can be estimated.  

The current densities over time with different amplitudes of applied sine voltage pulse 

are presented in Figure 14. 
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Fig. 12. Three dimensional plot of interpolated data. 

 

 

 

Fig. 13. Contour plot of electron number density with amplitude of the pulse and 

the A-C gap of the diode. 
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(a) Amplitude 3000V 

 

 

 
 

(b) Amplitude 4800V 
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(c) Amplitude 10,000V 

 
Fig. 14. Current densities for different input sine voltage amplitudes of (a) 3000 V,  

(b) 4800 V and (c) 10,000 V. 

 

These feather like patterns fold or untwist with the increasing or decreasing amplitudes. 

Although the pattern obtained for all the four types of voltage patterns were similar each type 

has its own shape for the branches of the feather. The amplitude of the pulse was increased 

from the lowest possible value that the model supports by keeping the other parameters of the 

system as constants. The feather like pattern folded first from an untwisted pattern and all its 

braches collapsed together to a single branch at the stationary point of the system. With the 

further increment of the amplitude, the feather like pattern began to open up from the single 

branch. The heads of the branches reduce gradually in anti-clock wise direction. For 

amplitudes less than stationary point, more branches are concentrated around lower voltage 

region of feathers i.e. right end of the feathers while for amplitudes greater than stationary 

point more branches are concentrated around higher voltage region, i.e. left end of the 

feathers. 

 

 

4. PARTICLE IN CELL SIMULATION 

 

A particle-in-cell technique [10]
 
was used to model the plasma inside the plasma diode. 

The time evolution of finite sized macro particles also known as computational particles was 

predicted by a self-consistent calculation of the field equation defined for each of the macro 

particle   of the system by, 
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2
.i i

e

v x e

t t m x

   
   

   
  (10) 

 

Particle-in-cell utilizes a set of computational particles to represent the transport of locally 

conserved quantities like charge and mass. The dynamics of a system of charge particles is 

given by the Vlasov equation for the one particle distribution function, 

 

0s s sf f fqE
v

t x m v

  
  

  
  (11) 

 

where fs is the phase space distribution function for a given species s (ion or electron) which 

represents the number density per unit element of the phase space or the probability of finding 

a particle in the area dx dv around a certain phase space point ( , )x v . But the Vlasov 

equation does not stands for the collision effect of the particles in the system [11].  The charge 

density distribution function is given by 

 

   , , , .s

s

x t f x v t dv     (12) 

 

The mathematical formulation of the particle-in-cell method is obtained by assuming that the 

distribution function of each species is given by the superposition of several elements named 

as computational particles. Each element represents a large number of physical elements that 

are near each other in phase space.  

 

   , , , ,s p

p

f x v t f x v t    (13) 

 

where fs is the phase space distribution function and fp is the distribution function of physical 

particles. This method is based upon assigning to each computational particle, a specific 

functional form for its distribution and with a number of free parameters whose time 

evolution will determine the numerical solution of the Vlasov equation. The choice is usually 

made to have two free parameters in the functional shape for each spatial dimension acquiring 

the physical meaning of position and velocity of the computational particle. The functional 

dependence is further assumed to be the tensor product of the shape in each direction of the 

phase space, 

 

     , , ( ) ( )p p x p v pf x v t N S x x t S v v t     (14) 

 
where Sx and Sv are the shape functions for the computational particles and Np is the number 

of physical particles that are present in the element of phase space represented by 

computational particle. The spatial shape functions are based on the use of b-spline functions, 

a series of consecutively higher order functions obtained from each other by integration. The 
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subsequent b-splines ( )lb , can be obtained by successive integration of the following 

generating formula, 

 

     0 1 0

1 1/ 2
' ' ',

0
l l

if
b b b d b

otherwise


    







 
   


  (15) 

 

By means of the b-splines, the spatial shape function is chosen as: 

 

  p

x p l

x x
S x x b

p

 
   

 
  (16) 

 

where    is the size of the computational particles. Equations of motion for the computational 

particles are given by 

 
2

2
0, .

p p p s
p

s

dN d x dv q
E

dt dt dt m
     (17) 

 

The numerical solution of Poisson and Vlasov equation was obtained using finite 

difference method assuming a grid of equal cells size x with cell centres xi and cell vertices 

xi+1/2 (Figure 15).  

 

 
 

 
Figure 15. 1D grid of equal cells. 

 

The scalar potential  is introduced by the cell averaged values .i  Poisson equation can 

be solved by means of three point formula, 

 

1 1
0 2

2i i i
i

x

  
   




  (18) 

 

where the densities    are similarly defined as average over the cells 1/2 1/2[ , ].i ix x   
The electric 

field was computed in cell canters by using the discrete potentials and the continuum electric 

field can be reconstructed using the assumption that the field is constant in each cell and equal 

to its average value, 
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1
0( ) ,i i i

i i

i

x x
E x E b E

x x

   
   

  
   (19) 

  

The simplest algorithm used to solve the equations of motion is based on staggering the 

time level of velocity and position by half time step, the leap-frog algorithm. The 

advancement of the position from time level n to n+1 uses the velocity at mid point
1/2n

pv 
 and 

similarly, the advancement of the velocity from time level 1/ 2n to 1/ 2n uses the 

midpoint position 
n

px  as show in the Figure 16.  

 

 
 

Figure 16. Visual representation of the leap-frog algorithm. 

 

 

Therefore 

 

1 1/2 3/2 1/2, ( ) .n n n n n n

p p p p p p px x tv v v tE x         (20)  

 

The charge distribution over the A-C length was calculated by assuming that the total 

cell charge of the grid was uniformly distributed over the cell area around the centralized 

computational particle at the middle of the cell so that the particles were located uniformly in 

random positions. The velocities of the particles were calculated using the Gaussian normal 

distribution function with a standard deviation of 0.5 for random particles. The charge density 

( )x  and potential ( )x are periodic and from the relation between their discrete Fourier 

transformations given by Poisson equation
2

0( ) ( ) /k k k   , the effective electric field on 

each computational particle was found by using fast Fourier and inverse fast Fourier 

transformation techniques. The electric field data was interpolated by means of cubic spline 

interpolation method to find the Lorentz’s forces acting on particles and acceleration and new 

velocity and new position of each particle were calculated.  Simulation was done for a plasma 

of 2000 electrons and 500 hydrogen, for a time period of 0.2 𝑠 with 1000 iterations. 

Although the particle collisions with the boundaries (anode or cathode) were investigated 

during the simulation period, the inter-particle collisions were ignored due to their 

complexity. After each 0.2𝑚𝑠 time step, electric field distribution without and with an 
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external electric field of 25 10.5 10extE Vm   is shown in Figures 17 and the particles in a 

phase space diagram in Figure 18.  
 

 
 

 

(a)  0.019 , 0extt s E   

 

 
 

(b) 0.199 , 0extt s E   
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(a)  
25 10.019 , 0.5 10extt s E Vm     

 

 

 
 

(b) 
25 10.199 , 0.5 10extt s E Vm     

 
Fig. 17.  Electric field distribution over the distance at(a) 0.019t s  and (b) 0.199t s  without an 

external electric field and at (c) 0.019t s  and (d) 0.199t s . with external electric field. 
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(a) 0.019t s  

 

 
 

(b) 0.199t s  

 
Fig. 18. Phase Space diagrams of the particles inside the plasma for diode at  (a) 0.019t s  and  

(b) 0.199t s without an electric field. 



International Letters of Chemistry, Physics and Astronomy 8(3) (2013) 220-242                                                                                                                          

 

242 

The distribution of the particles of plasma filled diode with and without an external 

electric field was the same except for the time taken for stabilized. With positive electric field 

this time is much less than for the ideal case while for negative field it is much greater.  

 

 

4.  CONCLUSIONS 

 

Two types of numerical models for plasma diode systems have been implemented and 

the system was investigated under different parameter conditions. For the numerical model 

based on the phenomenon of current density equilibrium at the plasma boundary a method for 

finding working ranges for electron number density with the variation of amplitude of the 

applied pulse and the A-C gap has been presented. The system will become stable with time 

when the system parameters are in their respective working range. The theoretical work to 

find the minimal electron density for a plasma diode system with the maximum amplitude of 

input voltage pulses in the A-C gap is an attempt to find working limits of the model. The 

developed model can be used to find the lower limit of range of the electron density in which 

the model will work properly by obeying physical rules of the plasma diode.  

By means of the numerical model, developed using a particle-in-cell simulation 

technique, the behaviour of the distribution of electric field and potential field and the 

behaviour of the charged particles inside the plasma over time for different values of 

externally applied electric fields was investigated with the assumptions that the anode cathode 

gap was completely filled with plasma and the inter-particle collisions are negligible. The 

system became stable after few time steps and the time taken to make the system stable, 

depends on the intensity and polarization of the external electric field.  
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