PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics simulation studies of solvation effect on the trans-xylomollin conformation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work describes the solvation effect on the trans-xylomollin conformation. We have studied the trans-xylomollin conformations with the distance restraints using simulation calculations. Distance Restraint Molecular Dynamic (DR-MD) and Distance Restraint Langevin Dynamic (DR-LD) simulations of the trans-xylomollin were performed with an efficient program. The geometries, interaction energies, bonds, angles, and the Van der Waals (VDW) interactions were carried out in solution and gas phases. This comparative study shows that the trans-xylomollin acquires low total energy in solution using DR-MD method and stable conformation under the AMBER field. This molecule reaches its high stable conformation state in solution environment. The solvation effect is more important with DR-MD simulations. Our results are goods and in agreement with the used force field.
Rocznik
Strony
132--140
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wz.
Twórcy
autor
  • Department of Chemistry, Faculty of Sciences, University of Tlemcen, B.P. 119, Tlemcen 13 000, Algeria., radiamahboub@yahoo.com
Bibliografia
  • [1] Ben-Naim A., Solvent Effects on Protein Stability and Protein Association, In Protein- Solvent Interactions, 1st ed.; Gregory, R. B., Ed.; Marcel Dekker, Inc.: New York, 1995; Vol. 592, pp 387-420.
  • [2] Water: A Comprehensive Treatise; Franks F., Ed.; Plenum Pub Corp: New York, 1972-1982; Vol. 1-7.
  • [3] Klebe G., Drug Discovery Today 11 (2006) 580-594.
  • [4] Corbeil C. R., Moitessier N., J. Chem. Inf. Model. 49 (2009) 997-1009.
  • [5] Froloff N., Windemuth A., Honig B., Protein Sci. 6 (1997) 1293-1301. [6] Eisenberg D.,McLachlan A. D., Nature. 319 (1986) 199-203.
  • [7] Teeter M. M., Annu. Rev. Biophys. Biophys. Chem. 20, (1991) 577-600.
  • [8] Soares C. M., Teixeira V. H., Baptista A. M., Biophys. J. 84 (2003) 1628-1641.
  • [9] Privalov P. L., Makhatadze G. I., J. Mol. Biol. 232 (1993) 660-679.
  • [10] Honig B., Yang A. S., Free Energy Balance in Protein Folding. In Adv. Protein Chem.; Anfinsen C. B., Richards F. M., Edsall J. T., Eisenberg D. S., Eds.; Academic Press: San Diego, 1995; Vol. 46, pp 27-58.
  • [11] Juneja A., Numata J., Nilsson L., Knapp E. W., J. Chem. Theory Comput. 6 (2010) 1871-1883.
  • [12] Warwicker J., Watson H. C., J. Mol. Biol. 157 (1982) 671-679.
  • [13] Cramer C. J., Truhlar D. G., Chem. Rev. 99 (1999) 2161-2200.
  • [14] Roux B., Simonson T., Biophys. Chem. 78 (1999) 1-20.
  • [15] Gilson M. K., Davis M. E., Luty B. A., McCammon J. A., J. Phys. Chem. 97 (1993) 3591-3600.
  • [16] Baker N. A., Curr. Opin. Struct. Biol. 15 (2005) 137-143.
  • [17] Lopes A., Alexandrov A., Bathelt C., Archontis G., Simonson T., Proteins: Struct. Funct. Bioinf. 67 (2007) 853-867.
  • [18] Ferrara P., Apostolakis J., Caflisch A., Proteins: Struct. Funct. Bioinf. 46 (2002) 24-33.
  • [19] Chen J., Brooks C. L., Phys. Chem. Chem. Phys. 10 (2008) 471-481.
  • [20] Vorobjev Y. N., Almagro J. C., Hermans J., Proteins: Struct. Funct. Bioinf. 32 (1998) 399-413.
  • [21] Warshel A., Aqvist J., Annu. Rev. Biophys. Biophys. Chem. 20 (1991) 267-298.
  • [22] Dill K. A., Biochemistry. 29 (2002) 7133-7155.
  • [23] Ben-Naim A., Hydrophobic Interactions; Plenum Press: New York: 1980.
  • [24] Southall N. T., Dill K. A., Haymet A. D. J., J. Phys. Chem. B. 106 (2001) 521-533.
  • [25] Kauzmann W., Some Factors in the Interpretation of Protein Denaturation. In Adv. Protein Chem.; Anfinsen C. B., Anson M. L., Bailey K., Edsall J. T., Eds.; Academic Press: New York, 1959; Vol. 14, pp 1-63.
  • [26] Tanford C., Protein Denaturation. In Adv. Protein Chem., Anfinsen C. B., Anson M. L., Edsall J. T., Frederic M. R., Eds.; Academic Press: New York, 1968; Vol. 23, pp. 121-282.
  • [27] Hummer G., Garde S., Garcia A. E., Pohorille A., Pratt L. R., Proc. Nat. Acad. Sci. 93 (1996) 8951-8955.
  • [28] Morriss G. P., Daivis P. J., Evans D. J., J. Chem. Phys. 94 (1991) 7420-7433.
  • [29] Padilla P., Toxvaerd S., J. Chem. Phys. 97 (1992) 7687-7694.
  • [30] Mesli F., Mahboub R., Phys. Chem. News. 56 (2010) 117-127.
  • [31] Mesli F., Mahboub R., Mahboub M., Arab. J. Chem. 4 (2011) 211-222.
  • [32] Mahboub R., Mahboub M., Mod. Appl. Sci. 6 (5) (2012) 100-110.
  • [33] Mahboub R., Inter. Letters Chem. Phys. Astro. 5 (2012) 46-58.
  • [34] Mesli F., Mahboub R., Res. J. Pharm. Biol. Chem. Sci. 1(1) (2010) 83-92.
  • [35] van Gunsteren W. F., Berendsen H. J. C., Angew. Chem. Int. Ed. Engl. 29(9) (1990) 992-1023.
  • [36] Karplus M., Petsko G. A., Nature 347 (1990) 631-639.
  • [37] Sabbaghzadeh R., Monajjemi M., Mollaamin F., Oryan, S., J. Cell. Mol. Res. 2(2) (2010) 93-102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0070-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.