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ABSTRACT 

An approximate extension of the slender body theory was used to determine the static shape of a 
conically ended dielectric fluid drop in an electric field. Using induced surface charge density, 
hydrostatic pressure and the surface tension of the liquid with interfacial tension stresses and Maxwell 
electric stresses, a governing equation was obtained for slender geometries for the equilibrium 
configuration and numerically solved for 3D. For an applied electric field, the electric energy on a 
spherical drop can be maximized in a weak dielectric by increasing the applied electric field. The 
minimum dielectric constant ratio needed to produce a conical end is 14.5 corresponding to a cone 
angle 31.25° .There is a sharp increment of the aspect ratio after reaching the threshold value of the 
applied field strength and the deformation of the fluid drop increases with the increase in dielectric 
constant of the fluid drop. For a particular dielectric constant ratio, the threshold electric field 
producing conical interface increases with the increased surface tension of the liquid. The threshold 
electric field for a water drop is 1.0854×104 units and the corresponding aspect ratio is 15. For the 
minimum dielectric ratio the cone angle of the drop decreases with applied field making the drop more 
stable at higher fields. 
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1.  INTRODUCTION 
 
         The isolated neutral droplet has provided a simple idealized system to investigate fluid 
motion in an electric field.  For drops held at an end of a capillary, the occurrence of conical 
tips at an interface exposed to an electric field was discovered by Zelney1. By adapting 
Rayleigh’s stability criterion for a charged sphere and assuming for droplets of equal inside 
and outside pressure, that the drop lengthened approximately into a form of prolate spheroid, 
he showed that the disintegration occur due to hydro dynamical instability. Many of early 
practical approaches were implemented on conical interfaces of soap bubbles held at the end 
of capillary tubes. Wilson and Taylor examined, the uncharged soap films subjected to a 
uniform electric field2 and nearly conical equilibrium shapes of water drops at an end of a 
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spherically formed conical electrode3. Similar investigations concerning nearly conical tips 
and on the sprays of tiny droplets that accompany the conical end have been made due to their 
use in electro-atomization. A method based on tensor virial providing a basis for a systematic 
investigation of both equilibrium and stability in the same framework was developed by 
Chandrasekhar4. An appropriate extension of the virial method developed by Chandrasekhar 
was used by Rosenkilde5 to systematically re-examine the equilibrium of incompressible 
dielectric fluid drops placed in a uniform electric field.  
 
           In the absence of fluid motion, the shape of the interface is implemented by the balance 
between interfacial tension stresses and Maxwell electric stresses in the interior of the droplet. 
In the present work for studying the equilibrium configurations of a real liquid, in addition to 
the above stresses, the hydrostatic pressure and the surface tension of the liquid were 
considered. We have assumed that the drop is static under the electric field and that the 
gravitational forces are negligible compared to the electric field and small excess pressures. In 
the absence of an electric field, the dielectric drop was assumed to be a sphere of interfacial 
tension. The shape of the drop and the electric field were coupled through the normal stress of 
the interface which balances electric stress, fluid pressure and the interfacial tension of the 
drop. Simplifying the normal stress balance for slender geometries an integral equation for the 
electric field was approximated using the slender hypothesis to obtain an ordinary differential 
equation that couples the electric field to the shape of the drop. Due to the nonlinearity of the 
equation, the small aspect ratios were neglected and exposing the drop to large electric fields, 
the electric field inside the dielectric drop was calculated and tested for large aspect ratios. 
The change in aspect ratios with the applied electric field and the dielectric constant of the 
drop was tested. The electric field which atomizes the drop was calculated by considering 
normal electric stress balance and the surface tension of the drop and was examined for 
different dielectric constants. The variation of the polarized surface charge density and the 
induced electric energy on the drop with the dielectric constants were computed. The conical 
ended shapes of drops with higher applied fields were also determined. 
 
 
2.  THE INDUCED CHARGE DENSITY ON THE CONICAL TIP 
 

 

 

r0 

 
 

 
Fig. 1.  Schematic illustration of the deformation of a dielectric fluid drop exposed to a uniform  
             electric field. 
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            The shape of the liquid drop can be considered initially spherical. When a dielectric 
liquid droplet is exposed to an electric field first elongates into prolate shape and then, if the 
field strength is sufficiently high to a pointed or conical ends (Figure 1).  
For the prolate spheroidal configurations, the conditions for the onset of instability can be 
obtained from elementary considerations. Nevertheless, it is useful to establish these 
conditions by a systematic approach which can be extended to more complicated situations 
involving internal currents of the drop. When a spherical dielectric liquid drop is exposed to 
an electric field, a surface charge due to the polarization of the material is induced and due to 
this excess electric stress at the interface between the liquid drop and the surrounding 
medium, the drop starts to elongate (Figure 1). In the absence of fluid motion, the shape of the 
interface is implemented by the balance between interfacial tension stresses, Maxwell electric 
stresses in the interior of the droplet as well as hydrostatic pressure and the surface tension of 
the liquid.  
 
Solving the Laplace’s equation for a spherical drop of dielectric constant ε, radius r0 placed in 
a medium of dielectric constant ε and a uniform electric field of magnitude E0 directed along 
the z-axis (Figure 1) with no free charges inside and outside the sphere, for the boundary 
conditions at r = r0, we obtain the potential inside φin and outside φout the liquid drop as 
 

( )0 0

3
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2in E r r rφ θ
ε ε
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( )
3

0
0 0 02

1
cos cos 0

2out

r
E E r r r

r

ε εφ θ θ
ε ε
 −= − ≤ ≤ +      (2) 

 
Using Maxwell’s equations, the electromagnetic force per unit volume acting on the dielectric 
liquid drop in SI units is5 
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0ε is the permittivity of free space. The electric stress tensor in a medium with dielectric 
constantε is given by

  

2
0

1
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2
E

i j ijT E E Eε ε δ = − 
 

  
 
Normal stress of the outer surface TE

out  and inner surface TE
in of the drop are given in terms of 

tangential (Et) and normal (En) components of electric field as6,  
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The jump in the normal electric stress across the interface separating two distinct dielectric 
liquids is 
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ε ε  is assumed to be a fixed parameter. The radius of the drop a(z) in cylindrical coordinates 
(r,θ, z) aligned with the applied electric field E0 , is assumed to be uniform at large distances 
from the interface. At the surface ( )r a z= , the small radial field Er is

6  
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2r zE a z E
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For slender shapes( )0i.e., 1a l << , assuming that ( ) ( )2

0 1a l ε ε << , the electric stress can be 

approximated by3 
 

( ) ( ) 2
0

1
. (8)

2
ET Eε ε ε∆ ≈ −   

     
This approximation neglects the effect of the normal components. Assuming that the drop is 
static, the shape of the drop and the electric field can be coupled through the normal-stress 
equation at the interface by balancing the electric stress difference and the fluid pressure to 
interfacial tension. The normal stress balance can be approximated by7 
 

  

( ) 2
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(9)
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a z

γε ε ε− + ∆ =
 

 
Where ∆P is the constant pressure excess inside the drop and γ 
is the coefficient of the interfacial tension.  
In order to find the behavior near a conical surface, the solution 
of the Laplace’s equation can be written in the form of 
Legendre function Pv(cosθ). If the limited angular region 
0 θ β≤ ≤ , 0 2φ π≤ ≤  is bounded by a conical dielectric surface 
for θ β=  as shown  in figure 2, the region can be considered as 

a deep conical hole bored in a dielectric surface. For 2β π> , 
the region of space is which surrounds a pointed conical 

  

P 

z 

β
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Fig. 2. Dielectric liquid drop 
bounded by a conical 
interface. 
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dielectric surface. With the assumption of azimuth symmetry, finite and single-valued 
solutions in the range of cos cos 1β θ≤ ≤  are sought. Since the dielectric surface θ β=  is at a 
fixed potential which can be taken as zero, the solution in cosθ must vanish at θ β=  to satisfy 
the boundary conditions. For regularity at x = 1, it is convenient to make a series expansion 
around x = 1 instead of x = 0. Since the potential must vanish at   θ = β for all r, the complete 
solution for the azimuthally symmetric potentials in regions of the conical surface 0 θ β≤ ≤  

and β θ π≤ ≤  are8 
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Standard boundary conditions for a fluid of dielectric constant ε lead to7  
 

( )0 0 0 0(cos ) '( cos ) ( cos ) '(cos ) 0 12v v v vP P P P
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For given ε and θ, equation (12) has a singular field solution for the range of v between  
0 1v< < . There is a critical value for dielectric constant, εc = 17.59 below which 1 / 2ν =  for all 
possible angles between 0 / 2θ π≤ ≤ , i.e. there is solution with 1 / 2ν = . For dielectric constants 
higher than critical value there are two angles corresponding to 1 / 2ν = . At the critical value, 
the minimum reaches 1 / 2 at θ = 300. The component of the electric field and the charge 
density σ on the conical dielectric drop are 
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A drop with conical ends can be constructed by matching a spheroid with two cones angle θ. 
For a drop with a conical tip, the electric field must diverge as 1 r . Therefore the electric 
field near the conical tips can be found when 1 / 2ν = . 
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The induced charge density of the dielectric liquid drop can be obtained from potential given 
in equation 1 and 2 by using the boundary conditions,  
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where re is unit vector towards the direction of r. The polarization surface charge density σpol 
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Fig. 3. Variation in the surface charge density at the top of the drop verses 
applied electric field. The points correspond to dielectric constant of water 

(88.7). 
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The surface charge densities 
calculated for a dielectric fluid 
drop for different dielectric 
constant and applied electric 
fields of 20, 200, 400, and 
600Vm-1are shown in figure 3. 
There are two main regions in the 
graph, a linear region and a 
saturate region. For an applied 
electric field, there is a limiting 
charge density for every dielectric 

constant corresponding to the finite maximum of the charge separation of the liquid drop. 
 
 
3. ENERGY AND ASPECT RATIO 
 
            In the absence of an electric field, the shape of the liquid drop is spherical due to 
minimization of surface energy caused by imbalance of adhesive forces and cohesive forces. 
In the presence of a uniform electric field due to induced electric charges inside the liquid 
drop, an excess electric energy is accumulated perturbing the shape of the drop. The electric 
energy stored in a spheroidal shape liquid drop can be obtained by evaluating the integral 
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Fig. 4. Surface electrical energy on the drop verses dielectric constant for applied 
electric fields of 20, 200, 400, and 600Vm-1. 
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where 2
04 / 3v a lπ=  is the volume of the drop. 

0a and l are constant for spheroids. Figure 4 is 
a plot of the energy stored in a spheroidal dielectric liquid drop of unit volume as a function 
of dielectric constant for applied electric fields of 20, 200, 400, and 600Vm-1.  The figure 
indicates that the electric energy on a spherical drop can be maximized in a weak dielectric by 
increasing the applied electric field.  
A slender dielectric drop when exposed to an electric field appears from the outside as a line 
distribution of charges. Using Gauss’s law, total induced charge Q and thereby the potential 
generated at a point (r,z) external to the drop due to line charge can be obtained. At the 

surface of the spheroid, z l=  and  0.r a=  The potential for 0a l<<<  
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At this point a new parameter termed, aspect ratio

0/R l a= is defined. The induced axial 
electric field is 
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With the assumption that electric field inside the drop is still a uniform electric field is 
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Stationary liquid drop acting under the influence of capillary forces assumes an exact 
spherical shape and can be expected to be nearly spheroidal in a small electric field. The 
stable configurations can be assumed to have an elliptical boundary of the form 
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For convenience, initially these boundaries have been chosen to be two dimensional 
coordinate spaces. This assumption has the advantage of greatly simplifying the boundary 
value problem associated with electric field. Therefore equation (20) simplifies to 
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Fig. 5. Aspect ratio of the drop versus applied field strength for different dielectric 
constants. 
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The normal stress balance equation (9) can be coupled with equation (22) for a stable static 
drop volume 2

04 / 3V a lπ=  of a spheroid.  With the symmetry requirements for E(z) and a(z) 
coupled equation read 
 

1 22
3

2
0 0

1
1 ln 4 (

3

R
P R E

R

π εγ ε ε ε
ε

   4    − ∆ + = − )           
                (23) 

 
                The above 
equation was solved 
numerically. 
Regardless of the 
orientation of the 
spheroid, aspect ratio 
R can be changed by 
changing the applied 
electric field. Figure 5 
shows aspect ratio for 
a unit volume of a 
liquid drop as a 
function of applied 
electric field strength 
for various dielectric 
constants. Aspect 
ratio is significantly 
affected by interfacial 
tension and the excess 
pressure of the drop. 
Therefore the analysis 
was done for selected 
values of interfacial tension, namely interfacial coefficient between water and air and excess 
pressure of one unit. Small aspect ratios of the drop was neglected in the calculation by the 
assumption0 .a l<<< Figure 5 shows that the shape of the drop gets further elongated with 
increased electric field strengths. When the dielectric constant of the drop is decreased, the 
field strength which is necessary to obtain the same aspect ratio has to be increased. There is a 
sharp increment of the aspect ratio after the threshold value of the applied field strength. The 
deformation of the fluid drop increases with the increase in dielectric constant of the fluid 
drop. For high applied electric fields, the drop still endures its configuration properties, 
interfacial tension and electric bond number.  
            The shapes of the drop modeled for a unit volume by taking the interfacial tension 
between the water and air for small excess pressures for several aspect ratios by using 
numerical values of electric field is shown in figure 6. This model was applied for large aspect 
ratios of the drop to avoid the domination of  ( )2

1 R term in equation (23) leading to nonlinear 

equations.  

 
Fig. 6. Model shapes of a dielectric fluid drop exposed to electric field. 

Each step of the drop shape was plotted while increasing the field 
strength. 
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               The range of aspect ratio of the drop was taken between 15 30 .R≤ ≤  We have 
shown that a drop with conical tips must have an electric field that diverges as 1 / 2r − with 
amplitude determined by the force balance equation (9). This amplitude depends on the 
applied field and the shape of the drop. In order to find external fields that give rise to conical 

tips, a liquid drop with cone angle 2α0  was considered. 0As , 0z l a→ → , static equilibrium 

require that the local electric field diverges as 
1/2( )a z −

. 0As , ( ) ( ) tanz l a z l z α→ = − . 

With 0 1 tanR a l α0= =  equation (19) read 
 

20 3 1
1 tan ln

( ) 8 tan

E

E z

ε α
ε α0

0

  
= −   

  
  (22)  

 
            When the electric field ratio between the outer surface of the drop and the inner 
surface is equal to 2, equation (22) read 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
deg 

 
Fig. 7. Dielectric constant ratios versus cone angles. The parallel line at 
ε = 88 indicates the dielectric constant of water. The corresponding 

cone angles of water are 7.45° and 44.43° 
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1

28 1
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ε α
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−

0
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               This ratio gives a good approximation of the minimum dielectric constant needed to 
produce conical tips at the end of the drop. Figure 7 shows the dielectric ratio with respect to 
cone angles. The minimum dielectric constant ratio is 14.4975 and the cone angle is 31.250. 
Equation (23) also gives reasonable results for two larger cone angles. The two singular points 

in the graph in the limit ε ε → ∞  correspond to 045α0 →  and 0 . W aterα 0 →  has a 
dielectric constant (88) greater than the critical value for producing conical tips. The conical 
interface for water is at two particular half angles (7.450 and 44.430). One angle is stable 
while the other is unstable.  
 
 
4.  MINIMUM ELECTRICG FIELD NECESSARY TO PRODUCE CONICAL ENDS 
 
          The minimum electric field required to sustain a drop with conical tips is a function of 
the dielectric constant ε. The units of quantities were removed by introducing dimensionless 
variables, electric capillary 

capl  and electric Bond number B, 
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The volume of the liquid drop may be reduced to a convenient form 
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The electric bond number can be eliminated using equation (24) 
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In order to find the minimum electric field minE which produces conical tips, the finite 
minimum volume of the drop must be found. This can be obtained by minimizing β. In terms 
of new parameters, the electric field is 0( ) / ,E E z E=

(
 radial distance ( )( ) 1 ( ) / ,capa z a z lε ε= −( (

 axial distance ( ) 1/2
2 1 / ln / capz R z lε ε= −  

(  and the internal excess pressure is 

( )( )/ 1 .capp l Pγ ε ε= − ∆( Then the governing equations reduces to the simpler form 

 

( ) ( )
1/ 2 5/22

2 1 2 3
2

4 2
( ) 1 ( ), ( ), ( ). 26

3 ln

l

l

d
E a z E a E p a b a dz B c

Rdz

ε
ε

−    − = + = =      
∫

(

(

( ( (( ( ( ((
(

   
 
For given value of internal excess pressure p

( , equation (26 (a) and(b)) determine the scaled 
shape of the drop. The corresponding electric field or equivalently the electric bond number is 
necessary to find the shape of the drop. In order to determine the drop shape numerically, a 
new parameter v is defined as  2 ,v a E=

((  
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At the conical end 0v →  and the constant of integration c = 0. The electric fieldE

(
, which is symmetric 

about 0z =( , may be determined by integrating the first order differential equation9 
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If 'E

( = 0 is attained, then the shape of the drop follows from equation (26 a). 
 
Drop volume was numerically obtained for different values of p

(

 from equation 26(c) 
(Figure.8). According to the figure, the dimensionless drop volume tends to a finite minimum 
as 1 3p →(

 and to infinity as 1p → −( . By symmetry of E(  about the centre of the drop and from 

equation (28), (0)E
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The length and volume are given by the integrals 
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           Equations (26)(a) and (b) were solved numerically for dimensionless shapes of the 

drop for various p(  values. Deformation of the drop can be increased by increasing .p
(

  
           Assuming there is a minimum drop volume for which a solution is possible, the 
minimum electric field Emin 
 

 

( )
5/2

6
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ε
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Fig. 8.  Drop volume for different values of p
(  
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                The proportionality constant of the equation (31) depends with the interfacial 
tension between the drop and the surrounding medium. Emin as a function of dielectric 
constant for different aspect ratios is shown in figure 9. All the curves have overlapped. There 
is also logarithm term of the aspect ratio which has no significant effect on the minimum 
electric field. We can predict that the minimum electric field which should be applied to 
produce conical interfaces will not be affected by the aspect ratio of the drop.  
                    The minimum electric field necessary to produce conical interface varies 

proportionally with the surface tension γ  in the form 1 2 17.59cγ ε− > . Figure 10 shows the 
variation of the minimum electric field necessary to produce a conical drop with the surface 
tension.  
                Surface tension of the water at the 0 °C was assumed to be 0.03 and  a unit volume 
of the drop was considered. Figures 11 and 12 represent the changing configuration of the 
drop when the applied electric field strength is increased to the minimum value which 
produces conical interface. The figure 12 shows the modeled shapes for various applied 
electric fields. The conical tips arise when the aspect ratio of the drop is equal to 15. If the 
field strength is increased further it will caused more deformation. The cone angles of the  
 
 
 
 
 

 

 

V
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Fig. 10. Emin versus dielectric constant for different surface tensions. 
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drop are between is 7.45° and 44.48°. The minimum electric field required to produce conical 
ends for a water drop was 1.0854×104 units. The figure 12 shows that the cone angle of the 
drop is decreasing with increasing applied field strengths making the drop more stable at 
higher fields.  
 

 
 
5.  CONCLUSIONS 
 
             The governing equations using the assumption of slenderness gave analytic 
characteristics of the drop shape and the minimum electric field necessary to obtain conical 
drops. The 3D calculations showed that there is a limiting charge density for every dielectric 
constant corresponding to the finite maximum of the charge separation of the liquid drop for 
and applied electric field and the electric energy on a spherical drop can be maximized in a 
weak dielectric by increasing the applied field. The minimum dielectric constant ratio need to 
produce a conical tip at the end of the drop is 14.5 corresponding to a cone angle 31.25°. The 
liquid drop volume changes with internal excess pressure tending to a finite minimum. 
Deformation of the drop can be increased by increasing internal excess pressure.  Aspect ratio 
which is significantly affected by interfacial tension and the excess pressure of the drop has a 
sharp increment after the threshold value of the applied field is reached. With the decrease in 
dielectric constant of the drop the field strength which is necessary to obtain the same aspect 
ratio has to be increased. For a particular dielectric constant ratio, the threshold electric field 
producing conical interfaces will not be affected by the aspect ratio of the liquid drop but 
increases with the increased surface tension of the liquid. The minimum electric field varies 
proportionally with the surface tension in the form1 2 17.59cγ ε− > . The conical interface of 

water has two half angles 7.45° and 44.43°. For the minimum dielectric ratio the cone angle 
of the drop decreases with applied field making the drop more stable at higher fields. The 
minimum electric field producing a conical ends of a water drop was 1.0854×104 units.  

 
Fig. 12. For dielectric constant ratio εc = 14.4975, 

highly deformed shapes form conical ends. 
Fig. 11. Changing configuration of a water drop to 

conical tips with applied electric field strength  
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